
COLLECTING SOLUTION

Quick start

Implementation Guide

Document version 1.9

Contents

1. HISTORY OF THE DOCUMENT...3

2. ESTABLISHING INTERACTION WITH THE PAYMENT GATEWAY.. 4
2.1. Setting up the payment page URL... 4
2.2. Identifying yourself when exchanging with the payment gateway...4
2.3. Managing interaction with the merchant website... 7
2.4. Managing security... 9

3. SETTING UP NOTIFICATIONS..11
3.1. Setting up the Instant Payment Notification...11
3.2. Automatic retry in case of failure...12
3.3. Other cases of notification.. 14

4. SENDING A PAYMENT FORM VIA POST... 15

5. COMPUTING THE SIGNATURE.. 20
5.1. Example of implementation with JAVA...22
5.2. Example of implementation with PHP... 25

6. IMPLEMENTING THE IPN...26
6.1. Preparing your environment..27
6.2. Retrieving data returned in the response.. 28
6.3. Computing the IPN signature..29
6.4. Comparing signatures.. 30
6.5. Analyzing the nature of the notification... 31
6.6. Processing the response data...32
6.7. Running tests and troubleshooting..38

7. RETURNING TO THE SHOP..41

8. OBTAINING HELP.. 42

1. HISTORY OF THE DOCUMENT

Version Author Date Comment

1.9 Lyra Collect 11/20/2020 • Update of the Sending a payment form via POST chapter.

1.8 Lyra Collect 7/30/2020 • Correction of field format for vads_trans_date.

• Update of the Setting up the Instant Payment Notification
chapter.

1.7 Lyra Collect 12/9/2019 • Update of the IPN setup procedure.

• Addition of the Implementing the IPN chapter.

• Correction of field format for vads_product_label.

• Modification of field format for vads_trans_id.

1.6 Lyra Collect 6/17/2019 The hash algorithm is now available via Settings Shop, Keys tab.

1.5 Lyra Collect 1/23/2019 • Update of the Identifying yourself when exchanging with
the payment gateway chapter.

• “Certificate” replaced with “Key” in all menus

1.4 Lyra Collect 10/1/2018 Initial version

This document and its contents are confidential. It is not legally binding. Any reproduction
and / or distribution of all or part of this document or its content to a third party is strictly
prohibited or subject to prior written authorization from Lyra Collect. All rights reserved.

Quick start - Document version 1.9

All rights reserved - 3 / 42

2. ESTABLISHING INTERACTION WITH THE PAYMENT GATEWAY

The merchant website and the payment gateway interact by exchanging data.

To create a payment, this data is sent in an HTML form via the buyer’s browser.

At the end of the payment, the result is transmitted to the merchant website in two ways:

• Via the browser when the buyer clicks the button to return to the merchant website.

• automatically by means of a notification called Instant Notification URL (also called IPN), see chapter
Setting up the end of payment notification.

To guarantee the security of the exchange, the data is signed with a key known only to the merchant and
the payment gateway.

2.1. Setting up the payment page URL

The merchant website interacts with the payment gateway by redirecting the buyer to the following URL:

https://secure.lyra.com/vads-payment/

2.2. Identifying yourself when exchanging with the payment gateway

To be able to interact with the payment gateway, the merchant needs to have:

• The shop ID: allows to identify the merchant website during the exchange. Its value is transmitted in
the vads_site_id field.

• The key: allows to compute the alphanumeric signature transmitted in the signature field.

To retrieve these values:

1. Sign in to the Lyra Collect Back Office: https://secure.lyra.com/portal/

2. Enter your login.

3. Enter your password.

4. Click Login.

In case of an entry error of the login and/or password, the error message “Invalid username or
password” will appear.

You can correct your entry or click on the link Forgotten password or locked account.

5. Click Other actions.

The following window appears:

Quick start - Document version 1.9

All rights reserved - 4 / 42

https://secure.lyra.com/vads-payment/
https://secure.lyra.com/portal/

6. Click on Expert Back Office to access your Expert Back Office.

7. Click Settings > Shop.

8. Select Keys.

Figure 1: Keys tab

Two types of keys are available:

• The test key that allows to generate the form signature in test mode.

• The production key that allows to generate the form signature in production mode.

These keys can be numeric or alphanumeric.

For maximum security, it is recommended to use an alphanumeric key.

To change the format of your test key, click the Regenerate a test key button and select the format
("ALPHANUMERIC" or "NUMERIC").

To change the format of your production key, click the Regenerate a production key button and select the
format ("ALPHANUMERIC" or "NUMERIC").

Quick start - Document version 1.9

All rights reserved - 5 / 42

Quick start - Document version 1.9

All rights reserved - 6 / 42

2.3. Managing interaction with the merchant website

Two types of URLs are used to manage the dialog with the merchant website:

• Instant Payment Notification, also called the IPN,

• Return URL to the merchant website.

Instant Payment Notification - IPN

The Notification URL is the URL of a specific page on the merchant website that is automatically called by
the payment gateway when certain events take place.

By default, the rules are created to manage the events below:

• end of payment (accepted or rejected),

• payment abandoned or canceled,

• token creation or update,

• recurring payment creation,

• new installment date,

• authorization made in case of a deferred payment,

• update of a transaction status by the acquirer,

• operation made via the Expert Back Office (cancellation, refund, duplication, manual payment, etc.).

These rules must be enabled and configured according to the needs of the merchant.

With each call, the payment gateway transmits transaction details to the merchant website. It is called
instant notification (or IPN as in Instant Payment Notification).

To guarantee the security of the exchange, the data is signed with a key known only to the merchant and
the payment gateway.

URL of return to the merchant website

In the Expert Back Office, the merchant can configure the "default” return URLs via the menu Settings >
Shop > Configuration tab:

Figure 2: Setting up return URLs

The merchant can set up a

different return URL for each mode.

By default, the buyer is redirected to the URL regardless of the payment result.

If no URL has been set up, the main URL of the shop will be used for redirection (URL parameter defined
in the Details section of the shop).

The merchant will be able to override this setting in his/her payment form (see chapter Setting up return
URLs).

Quick start - Document version 1.9

All rights reserved - 7 / 42

The status of the "Instant Payment Notification at the End of Payment" (IPN) rule is displayed
in this window. If the URL has not been set up, make sure to specify it (see chapter Setting up
notifications).

Quick start - Document version 1.9

All rights reserved - 8 / 42

2.4. Managing security

There are several ways to guarantee the security of online payments.

2.4.1. Ensuring interaction integrity

The integrity of exchanged information is preserved by the exchange of alphanumeric signatures between
the payment platform and the merchant website.

The payment gateway and the merchant website interact via HTML forms.

A form contains a list of specific fields (see chapter Generating a payment form) used to generate a chain.

This chain is then converted to a smaller chain using a hash function (SHA-1, HMAC-SHA-256).

The merchant will be able to choose the hash algorithm in their Expert Back Office (see chapter Choosing
the hash algorithm).

The resulting chain is referred to as the digest (empreinte in French) of the initial chain.

The digest must be transmitted in the signature field (see chapter Computing the signature).

Modeling security mechanisms:

MERCHANT

PAYMENT
GATEWAY

Collects the form data
and computes the signature

Processes the payment

Receives the form data
and computes the signature

Submits the form data

Updates his/her database

Builds the form data
and computes the signature

Receives the form data
and computes the signature

YES

NO

Redirects the form data
to payment gateway

Compares the computed
signature with the

merchant signature

Identical
signatures?

Payment request is rejected

Analyses the
origin of the error

Identical
signatures?

Compares the computed
signature with the

transmitted signature

YES

NO

Figure 3: Diagram of a security mechanism

1. The merchant website builds the form data and computes the signature.

2. The merchant website submits the form to the gateway.

3. The gateway receives the form data and computes the signature.

4. The gateway compares the computed signature with the signature that was transmitted by the
merchant website.

5. If the signatures are different, the payment request is rejected.

If not, the gateway proceeds to payment.

6. The gateway builds the result data and computes the response signature.

Quick start - Document version 1.9

All rights reserved - 9 / 42

7. Depending on the shop configuration (see chapter Setting up notifications), the payment gateway
transmits the payment result to the merchant website.

8. The merchant website receives the data and computes the signature. It compares the computed
signature with the signature that was transmitted by the payment gateway.

9. If the signatures are different, the merchant analyses the source of the error (computation error,
attempted fraud, etc.).

If not, the merchant proceeds to update their database (stock status, order status, etc.).

2.4.2. Selecting the hash algorithm

In the Expert Back Office (Settings > Shop > Keys), the merchant can choose the hash function to use for
generating signatures.

HMAC-SHA-256 signature algorithm is applied by default.

You can select a different signature algorithm for TEST mode and for PRODUCTION mode.

However, be sure to use the same method to generate your payment forms and to analyze the
data transmitted by the gateway during notifications.

In order to facilitate changing the algorithm, the SHA-1 or HMAC-SHA-256 signatures will be
accepted without generating rejections due to signature error for 24h.

2.4.3. Storing the production key

For security reasons, the production key will be masked after the first real payment made with a real card.

It is strongly recommended to store the key in a safe place (encrypted file, database etc.).

In case of losing the key, the merchant will be able to regenerate a new one via their Expert Back Office.

Remember that the production key can be viewed in the Expert Back Office via Settings > Shop > Keys tab.

2.4.4. Managing sensitive data

Online payment transactions are regulated by strict rules (PCI-DSS certification).

As a merchant, you have to make sure to never openly transcribe data that could resemble a credit card
number. Your form will be rejected (code 999 - Sensitive data detected).

Special attention should be paid to order numbers containing between 13 and 16 numeric characters and
beginning with 3, 4 or 5.

Quick start - Document version 1.9

All rights reserved - 10 / 42

3. SETTING UP NOTIFICATIONS

To access the notification rule management, open the menu: Settings > Notification rules.

The rule configuration tab of “Instant Payment Notification URL call” type opens.

3.1. Setting up the Instant Payment Notification

This rule allows to notify the merchant website in the following cases:

• Payment accepted

• Payment refused

• Token creation or update

• Creation of a recurring payment

The Payment accepted event corresponds to the creation of a transaction with one of the
(vads_trans_status) statuses below:

• ACCEPTED

• AUTHORISED

• AUTHORISED_TO_VALIDATE

• CAPTURED

• INITIAL

• UNDER_VERIFICATION

• WAITING_AUTHORISATION

• WAITING_AUTHORISATION_TO_VALIDATE

• WAITING_FOR_PAYMENT

This notification is required to communicate the result of the payment request.

It will inform the merchant website of the payment result even if your client has not clicked the “Return
to the shop” button.

1. Right-click Instant Payment Notification URL at the end of the payment.

2. Select Manage the rule.

3. Enter the E-mail address(es) to notify in case of failure field in the General settings section.

To specify several e-mail addresses, separate them with a semi-colon.

4. Check the box Automatic retry in case of failure if you wish to authorize the gateway to automatically
resend the notification in case of a failure (can be done up to 4 times).

For more information, please see chapter Automatic retry in case of failure on page 12.

Quick start - Document version 1.9

All rights reserved - 11 / 42

5. In the Instant Payment Notification URL of the API form V1, V2 section, specify the URL of your page
in the fields URL to notify in TEST mode and URL to notify in PRODUCTION mode.

6. Save the changes.

3.2. Automatic retry in case of failure

Automatic retry does not apply to notifications manually triggered via the Expert Back Office.

The merchant can enable a mechanism that allows the payment gateway to automatically return
notifications when the merchant website is temporarily unavailable, up to 4 times.

A notification will be considered as failed if the HTTP code returned by the merchant site is not on the
following list: 200, 201, 202, 203, 204, 205, 206, 301, 302, 303, 307, 308.

Call attempts are scheduled at fixed intervals every 15 minutes (00, 15, 30, 45).

After each failed attempt, a notification e-mail is sent to the e-mail address specified in the configuration
of the notification rule in question.

In this case, the subject of the e-mail contains the number corresponding to the notification retry attempt.
It is presented as attempt # followed by the attempt number.

• Example of an e-mail subject following a first notification failure at the end of payment:

[MODE TEST] My Shop - Tr. ref. 067925 / FAILURE during the call to your IPN URL
 [unsuccessful attempt #1]

• Example of an e-mail subject following a second failure:

[MODE TEST] My Shop - Tr. ref. 067925 / FAILURE during the call to your IPN URL
 [unsuccessful attempt #2]

• Example of an e-mail subject following a third failure:

[MODE TEST] My Shop - Tr. ref. 067925 / FAILURE during the call to your IPN URL
 [unsuccessful attempt #3]

• Example of an e-mail subject following the last failure:

[MODE TEST] My Shop - Tr. ref. 067925 / FAILURE during the call to your IPN URL
 [unsuccessful attempt #last]

To notify the merchant website of the last notification attempt, the e-mail subject will contain the
mention attempt #last.

During the automatic retry, certain details are not stored in the database or are modified.

Examples of fields not available/not registered in the database:

Field name Description

vads_page_action Completed operation

vads_payment_config Payment type (immediate or installment).

vads_action_mode Acquisition mode for payment method data.

Examples of fields sent with different values:

Field name New value

vads_url_check_src Always set to RETRY in case of automatic retry.

Quick start - Document version 1.9

All rights reserved - 12 / 42

Field name New value

vads_trans_status The transaction status may vary between the initial call and the automatic retry
(cancellation by the merchant, transaction capture at the bank, etc.).

vads_hash The value of this field is regenerated with each call.

signature The signature value depends on the different statuses that may vary between the
initial call and the automatic retry.

These e-mails contain:

• the encountered problem,

• parts of analysis depending on the error,

• its consequences,

• instructions for manually triggering the notification from the Expert Back Office.

After the fourth attempt, it is still possible to retry the IPN URL manually via your Expert Back
Office.

Warning, during the automatic retry, any manual call to the IPN URL will affect the number of
automatic attempts:

• a successful manual call will stop the automatic retry,

• a failed manual call will have no impact on the current automatic retry.

Quick start - Document version 1.9

All rights reserved - 13 / 42

3.3. Other cases of notification

Depending on the subscribed commercial options, the payment gateway will make a call to the notification
URL in the following cases :

• abort or cancellation by the buyer on the payment page

• refund from the Expert Back Office

• cancellation of a transaction from the Expert Back Office

• validation of a transaction from the Expert Back Office

• modification of a transaction from the Expert Back Office

• etc.

For more information on configuring rules, see Notification center user guide.

Quick start - Document version 1.9

All rights reserved - 14 / 42

4. SENDING A PAYMENT FORM VIA POST

The merchant website redirects the buyer to the payment gateway using a POST form from HTML to HTTPS.

This form contains:

The following technical elements:

• The <form> and </form> tags that allow to create an HTML form.

• The method="POST" attribute that defines the method used for sending data.

• The action="https://secure.lyra.com/vads-payment/" attribute that defines where to send the form
data.

Form data:

All the data in the form must be encoded in UTF-8.

Special characters (accents, punctuation marks, etc.) will then be correctly interpreted by the payment
gateway. Otherwise, the signature will be computed incorrectly and the form will be rejected.

Please, consult the table below that indicates required formats.

Notation Description

a Alphabetic characters (from ‘A’ to ‘Z’ and from ‘a’ to ‘z’)

n Numeric characters

s Special characters

an Alphanumeric characters

ans Alphanumeric and special characters (except ‘<’ and ‘>’)

3 Fixed length of 3 characters

..12 Variable length up to 12 characters

json JavaScript Object Notation.
Object containing key/value pairs separated by commas.

It starts with a left brace " { " and ends with a right brace " } ".

Each key/value pair contains the name of the key between double-quotes followed by “:” followed by a value.
The name of the key must be alphanumeric.
The value can be:

• a chain of characters (in this case it must be framed by double-quotes)

• a number

• an object

• a table

• a boolean

• empty

Example: {"name1":45,"name2":"value2", "name3"=false}
enum Characterizes a field with a complete list of values.

The list of possible values is given in the field definition.

Enum list List of values separated by a “ ; ”.
The list of possible values is given in the field definition.

Example: vads_payment_cards=VISA;MASTERCARD
map List of key / value pairs separated by a “;”.

Each key/value pair contains the name of the key followed by “=”, followed by a value.
The value can be:

• a chain of characters

• a boolean

• a json object

Quick start - Document version 1.9

All rights reserved - 15 / 42

https://secure.lyra.com/vads-payment/

Notation Description
• an xml object

The list of possible values for each key/value pair is provided in the field definition.

Example: vads_theme_config=SIMPLIFIED_DISPLAY=true;RESPONSIVE_MODEL=Model_1

• Required fields:

Field name Description Format Value

signature Signature guaranteeing the
integrity of the requests exchanged
between the merchant website and
the payment gateway.

ans

Ex :
ycA5Do5tNvsnKdc/eP1bj2xa19z9q3iWPy9/
rpesfS0=

vads_action_mode Acquisition mode for payment
method data

enum
INTERACTIVE

vads_amount Payment amount in the smallest
currency unit (cents for euro)

n..12
E.g.: 4525 for EUR 45.25

vads_ctx_mode Mode of interaction with the
payment gateway

enum
TEST or PRODUCTION

vads_currency Numeric currency code to be used
for the payment, in compliance with
the ISO 4217 standard (numeric
code).

n3

E.g.: 978 for euro (EUR)

vads_page_action Action to perform enum PAYMENT

vads_payment_config Payment type
enum

SINGLE for immediate payment
MULTI for installment payment

vads_site_id Shop ID n8 E.g.: 12345678

vads_trans_date Date and time of the payment form
in UTC format n14

Respect the YYYYMMDDHHMMSS format
E.g.: 20200101130025

vads_trans_id Transaction number.
Must be unique within the
same day (from 00:00:00 UTC to
23:59:59 UTC).
Warning: this field is not case
sensitive.

an6

E.g.: xrT15p

vads_version Version of the exchange protocol
with the payment gateway

enum
V2

• Highly recommended fields:

• The payment method to be used

Field name Description Format Value

vads_payment_cards Allows to force the card type to
be used.
It is recommended to provide
a different payment button for
each payment method on the
merchant website.
It is recommended not to leave
the field empty.
See chapter Managing the
payment methods offered
to the buyer of the Hosted
Payment Page Implementation
guide for more information.

enum E.g.:

• CB

• CVCO

• MASTERCARD

• VISA

• SDD

• Order details

Field name Description Format Value

vads_order_id Order ID
Can contain uppercase or
lowercase characters, numbers

ans..64
E.g.: 2-XQ001

Quick start - Document version 1.9

All rights reserved - 16 / 42

Field name Description Format Value
or hyphens ([A-Z] [a-z], 0-9, _,
-).

vads_order_info Additional order info ans..255 E.g.: Door code 3125

vads_order_info2 Additional order info ans..255 E.g.: No elevator

vads_order_info3 Additional order info ans..255 E.g.: Express

vads_ext_info_xxxx Additional information
necessary for the merchant that
will be displayed both in the
payment confirmation e-mail
sent to the merchant and in the
Expert Back Office (Extra tab of
the transaction details).
xxxx corresponds to the name
of the transmitted data.
For example:
vads_ext_info_departure_city

ans..255 E.g.: LHR

Quick start - Document version 1.9

All rights reserved - 17 / 42

• Buyer details

Field name Description Format Value

vads_cust_email Buyer’s e-mail address ans..150 E.g.: ABC@example.com

vads_cust_id Buyer reference on the
merchant website

an..63
E.g.: C2383333540

vads_cust_national_id National identifier ans..255 E.g.: 940992310285

vads_cust_title Buyer’s title an..63 E.g.: M

vads_cust_status Status
enum

PRIVATE: for a private individual
COMPANY: for a company

vads_cust_first_name First name ans..63 E.g.: Laurent

vads_cust_last_name Last name ans..63 E.g.: Durant

vads_cust_legal_name Buyer’s legal name an..100 E.g.: D. & Cie

vads_cust_phone Phone number an..32 E.g.: 0467330222

vads_cust_cell_phone Cell phone number an..32 E.g.: 06 12 34 56 78

vads_cust_address_number Street number ans..64 E.g.: 109

vads_cust_address Postal address ans..255 E.g.: Rue de l'Innovation

vads_cust_address2 Address line 2 ans..255 E.g.:

vads_cust_district District ans..127 E.g.: Centre ville

vads_cust_zip Zip code an..64 E.g.: 31670

vads_cust_city City an..128 E.g.: Labège

vads_cust_state State / Region ans..127 E.g.: Occitanie

vads_cust_country Country code in compliance
with the ISO 3166 alpha-2
standard

a2
E.g.: "FR" for France, "PF" for French
Polynesia, "NC" for New Caledonia,
"US" for the United States.

• Recommended fields:

• Shipping details

Field name Description Format Value

vads_ship_to_city City an..128 E.g.: Bordeaux

vads_ship_to_country Country code in compliance
with the ISO 3166 standard
(required for triggering one or
more actions if the Shipping
country control profile is
enabled).

a2

E.g.: FR

vads_ship_to_district District ans..127 E.g.: La Bastide

vads_ship_to_first_name First name ans..63 E.g.: Albert

vads_ship_to_last_name Last name ans..63 E.g.: Durant

vads_ship_to_legal_name Legal name an..100 E.g.: D. & Cie

vads_ship_to_phone_num Phone number ans..32 E.g.: 0460030288

vads_ship_to_state State / Region ans..127 E.g.: Nouvelle Aquitaine

vads_ship_to_status Allows to specify the type of the
shipping address.

enum

PRIVATE: for shipping to a private
individual
COMPANY: for shipping to a
company

vads_ship_to_street_number Street number ans..64 E.g.: 2

vads_ship_to_street Postal address ans..255 E.g.: Rue Sainte Catherine

vads_ship_to_street2 Address line 2 ans..255

vads_ship_to_zip Zip code an..64 E.g.: 33000

• Shopping cart details

Field name Description Format Value

vads_nb_products Number of items in the cart n..12 E.g.: 2

vads_product_ext_idN Product barcode on the
merchant website. N
corresponds to the index of the

an..100
E.g.:
vads_product_ext_id0 =
"0123654789123654789"

Quick start - Document version 1.9

All rights reserved - 18 / 42

Field name Description Format Value
item (0 for the first one, 1 for the
second one, etc.).

vads_product_ext_id1 =
"0223654789123654789"
vads_product_ext_id2 =
"0323654789123654789"

vads_product_labelN Item name. N corresponds to
the index of the item (0 for the
first one, 1 for the second one,
etc.).

ans..255

E.g.:
vads_product_label0 = "tee-shirt"
vads_product_label1 = "Biscuit"
vads_product_label2 = "sandwich"

vads_product_amountN Price of the item incl. VAT. N
corresponds to the index of the
item (0 for the first one, 1 for the
second one, etc.).

n..12

E.g.:
vads_product_amount0 = "1200"
vads_product_amount1 = "800"
vads_product_amount2 = "950"

vads_product_typeN Item type. N corresponds to the
index of the item (0 for the first
one, 1 for the second one, etc.).

enum

E.g.:
vads_product_type0 =
"CLOTHING_AND_ACCESSORIES"
vads_product_type1 =
"FOOD_AND_GROCERY"
vads_product_type2 =
"FOOD_AND_GROCERY"

vads_product_refN Item reference. N corresponds
to the index of the item (0 for
the first one, 1 for the second
one, etc.).

an..64

E.g.:
vads_product_ref0 = "CAA-25-006"
vads_product_ref1 = "FAG-B5-112"
vads_product_ref2 = "FAG-S9-650"

vads_product_qtyN Item quantity. N corresponds to
the index of the item (0 for the
first one, 1 for the second one,
etc.).

n..12

E.g.:
vads_product_qty0 = "1"
vads_product_qty1 = "2"
vads_product_qty2 = "2"

Note:

When the vads_nb_products field is populated, the Shopping cart tab becomes available in the
transaction details in the Expert Back Office.

However, if the other fields that start with vads_product_ are not populated, the tab will not
include any information. For this reason, when populating the vads_nb_products field, it becomes
mandatory to populate the other fields that start with vads_product_.

• Optional fields :

You can use additional optional parameters.

See the chapter Data Dictionary of the Hosted Payment Page Implementation guide available on our
web site to see the list of the available fields.

The Pay button that will allow to send data:

<input type="submit" name="pay" value="Pay"/>

Quick start - Document version 1.9

All rights reserved - 19 / 42

5. COMPUTING THE SIGNATURE

To be able to compute the signature, you must have:

• all the fields that start withvads_

• the signature algorithm chosen in the shop configuration

• the key

The key value is available in your Expert Back Office via Settings > Shop > Keys tab.

The signature algorithm is defined in your Expert Back Office via Settings > Shop > Configuration tab.

For maximum security, it is recommended to use HMAC-SHA-256 algorithm and an
alphanumeric key.

The use of SHA-1 algorithm is deprecated but maintained for compliance reasons.

To compute the signature:

1. Sort the fields whose name begins with vads_alphabetical order.

2. Make sure that all the fields are encoded in UTF-8.

3. Concatenate the values of these fields separating them with the "+ character”.

4. Concatenate the result with the test or production key separating them with the “+ character”.

5. According to the signature algorithm defined in your shop configuration:

a. If your shop is configured to use “SHA-1”, apply the SHA-1 hash function to the chain obtained
during the previous step. Deprecated.

b. If your shop is configured to use “HMAC-SHA-256”, compute and encode in Base64 format the
message signature using the HMAC-SHA-256 algorithm with the following parameters:

• the SHA-256 hash function,

• the test or production key (depending on the value of the vads_ctx_mode field) as a shared
key,

• the result of the previous step as the message to authenticate.

6. Save the result of the previous step in the signature field.

Quick start - Document version 1.9

All rights reserved - 20 / 42

Example of parameters sent to the payment gateway:

<form method="POST" action="https://secure.lyra.com/vads-payment/">
<input type="hidden" name="vads_action_mode" value="INTERACTIVE" />
<input type="hidden" name="vads_amount" value="5124" />
<input type="hidden" name="vads_ctx_mode" value="TEST" />
<input type="hidden" name="vads_currency" value="978" />
<input type="hidden" name="vads_page_action" value="PAYMENT" />
<input type="hidden" name="vads_payment_config" value="SINGLE" />
<input type="hidden" name="vads_site_id" value="12345678" />
<input type="hidden" name="vads_trans_date" value="20170129130025" />
<input type="hidden" name="vads_trans_id" value="123456" />
<input type="hidden" name="vads_version" value="V2" />
<input type="hidden" name="signature" value="ycA5Do5tNvsnKdc/eP1bj2xa19z9q3iWPy9/rpesfS0="/>

<input type="submit" name="pay" value="Pay"/>
</form>

This sample form is analyzed as follows:

1. We sort in alphabetical order the fields whose name begins with vads_ :

• vads_action_mode

• vads_amount

• vads_ctx_mode

• vads_currency

• vads_page_action

• vads_payment_config

• vads_site_id

• vads_trans_date

• vads_trans_id

• vads_version

2. We concatenate the value of these fields with the "+ character":

INTERACTIVE+5124+TEST+978+PAYMENT+SINGLE+12345678+20170129130025+123456+V2

3. The value of the test key is added at the end of the chain and separated with the "+ character”. In this
example, the test key is 1122334455667788

INTERACTIVE+5124+TEST+978+PAYMENT+SINGLE+12345678+20170129130025+123456+V2+1122334455667788

4. If you use the SHA-1 algorithm, apply it to the obtained chain.

The result that must be transmitted in the signature field is:
59c96b34c74b9375c332b0b6a32e6deeec87de2b

5. If your shop is configured to use “HMAC-SHA-256”, compute and encode in Base64 format the message
signature using the HMAC-SHA-256 algorithm with the following parameters:

• the SHA-256 hash function,

• the test or production key (depending on the value of the vads_ctx_mode field) as a shared key,

• the result of the previous step as the message to authenticate.

The result that must be transmitted in the signature field is:

ycA5Do5tNvsnKdc/eP1bj2xa19z9q3iWPy9/rpesfS0=

Quick start - Document version 1.9

All rights reserved - 21 / 42

https://secure.lyra.com/vads-payment/

5.1. Example of implementation with JAVA

Definition of the utility class SHA that will include the elements required to process the HMAC-SHA-256
algorithm

import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
import java.io.UnsupportedEncodingException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.util.Base64;
import java.util.TreeMap;

public class VadsSignatureExample {
 /**
 * Build signature (HMAC SHA-256 version) from provided parameters and secret key.
 * Parameters are provided as a TreeMap (with sorted keys).
 */
 public static String buildSignature(TreeMap<String, String> formParameters, String
 secretKey) throws NoSuchAlgorithmException, InvalidKeyException, UnsupportedEncodingException
 {
 // Build message from parameters
 String message = String.join("+", formParameters.values());
 message += "+" + secretKey;
 // Sign
 return hmacSha256Base64(message, secretKey);
 }
 /**
 * Actual signing operation.
 */
 public static String hmacSha256Base64(String message, String secretKey) throws
 NoSuchAlgorithmException, InvalidKeyException, UnsupportedEncodingException {
 // Prepare hmac sha256 cipher algorithm with provided secretKey
 Mac hmacSha256;
 try {
 hmacSha256 = Mac.getInstance("HmacSHA256");
 } catch (NoSuchAlgorithmException nsae) {
 hmacSha256 = Mac.getInstance("HMAC-SHA-256");
 }
 SecretKeySpec secretKeySpec = new SecretKeySpec(secretKey.getBytes("UTF-8"), "HmacSHA256");
 hmacSha256.init(secretKeySpec);
 // Build and return signature
 return Base64.getEncoder().encodeToString(hmacSha256.doFinal(message.getBytes("UTF-8")));
 }
}

Definition of the utility class SHA that will include the elements required for processing the SHA-1
algorithm

import java.security.MessageDigest;
import java.security.SecureRandom;

public class Sha {
 static public final String SEPARATOR = "+" ;
 public static String encode(String src) {
 try {
 MessageDigest md;
 md = MessageDigest.getInstance("SHA-1");
 byte bytes[] = src.getBytes("UTF-8");
 md.update(bytes, 0, bytes. length);
 byte[] sha1hash = md.digest();
 return convertToHex(sha1hash);
 }
 catch(Exception e){
 throw new RuntimeException(e);
 }
 }
 private static String convertToHex(byte[] sha1hash) {
 StringBuilder builder = new StringBuilder();
 for (int i = 0; i < sha1hash. length ; i++) {
 byte c = sha1hash[i];
 addHex(builder, (c >> 4) & 0xf);
 addHex(builder, c & 0xf);
 }
 return builder.toString();
 }
 private static void addHex(StringBuilder builder, int c) {
 if (c < 10)
 builder.append((char) (c + '0'));
 else
 builder.append((char) (c + 'a' - 10));

Quick start - Document version 1.9

All rights reserved - 22 / 42

 }
}

Quick start - Document version 1.9

All rights reserved - 23 / 42

Function that computes the signature:

public ActionForward performCheck(ActionMapping actionMapping, Basivoirorm form,
 HttpServletRequest request, HttpServletResponse response){
 SortedSet<String> vadsFields = new TreeSet<String>();
 Enumeration<String> paramNames = request.getParameterNames();

 // retrieve and sort the fields starting with vads_* alphabetically
 while (paramNames.hasMoreElements()) {
 String paramName = paramNames.nextElement();
 if (paramName.startsWith("vads_")) {
 vadsFields.add(paramName);
 }
 }
// Compute the signature
String sep = Sha.SEPARATOR;
StringBuilder sb = new StringBuilder();
for (String vadsParamName : vadsFields) {
 String vadsParamValue = request.getParameter(vadsParamName);
 if (vadsParamValue != null) {
 sb.append(vadsParamValue);
 }
 sb.append(sep);
}
sb.append(shaKey);
String c_sign = Sha.encode(sb.toString());
return c_sign;}

Quick start - Document version 1.9

All rights reserved - 24 / 42

5.2. Example of implementation with PHP

Example of signature computation using the HMAC-SHA-256 algorithm:

function getSignature ($params,$key)
{
 /**
 *Function that computes the signature.
 * $params : table containing the fields to send in the payment form.
 * $key : TEST or PRODUCTION key
 */
 //Initialization of the variable that will contain the string to encrypt
 $signature_content = "";

 //sorting fields alphabetically
 ksort($params);
 foreach($params as $name=>$value){

 //Recovery of vads_ fields
 if (substr($name,0,5)=='vads_'){

 //Concatenation with "+"
 $signature_content .= $value."+";
 }
 }
 //Adding the key at the end
 $signature_content .= $key;

 //Encoding base64 encoded chain with SHA-256 algorithm
 $signature = base64_encode(hash_hmac('sha256',$signature_content, $key, true));
 return $signature;
 }

Example of signature computation using the SHA-1 algorithm:

function getSignature($params, $key)
{
 /**
 * Function that computes the signature.
 * $params : table containing the fields to send in the payment form.
 * $key : TEST or PRODUCTION key
 */
 //Initialization of the variable that will contain the string to encrypt
 $signature_content = "" ;

 // Sorting fields alphabetically
 ksort($params);
 foreach ($params as $name =>$value)
 {
 // Recovery of vads_ fields
 if (substr($name,0,5)=='vads_') {
 // Concatenation with "+"
 $signature_content .= $value."+";
 }
 }
 // Adding the key at the end
 $signature_content .= $key;

 // Applying SHA-1 algorithm
 $signature = sha1($signature_content);
 return $signature ;
}

Quick start - Document version 1.9

All rights reserved - 25 / 42

6. IMPLEMENTING THE IPN

The script must include at least the following steps:

• Retrieve the field list sent with the POST response

• Compute the signature taking into account the received data

• Compare the computed signature with the received signature

• Analyze the nature of the notification

• Retrieve the payment result

The script may check the order status (or any information of your choice) to see if it has not already been
updated.

Once these steps are completed, the script can update the database (new order status, stock update,
registration of payment information, etc.).

In order to facilitate support and diagnosis by the merchant in the event of a notification error, we
recommend to write messages that will allow you to know at which stage of processing the error occurred.

The gateway reads and stores the first 256 bytes of the HTTP response.

You can write messages throughout the processing. Here are some examples of messages that you can use:

Message Use case

Data received. Message to display when retrieving data.
Allows to confirm that the notification has been received by
the merchant website.

POST is empty. Message to display when retrieving data.
Allows to bring out a possible redirection that would have
caused the parameters posted by the payment gateway to be
lost.

An error occurred while computing the signature. Message to be displayed when the verification of the response
signature has failed.

Order successfully updated. Message to be displayed at the end of the file once your
processing has been successfully completed.

An error occurred while updating the order. Message to be displayed at the end of the file if an error
occurred during your processing.

Quick start - Document version 1.9

All rights reserved - 26 / 42

6.1. Preparing your environment

The notifications of Instant Payment Notification URL call type are very important as they
represent the only reliable way for the merchant website to obtain the payment result.

It is therefore necessary to make sure the notifications function properly.

Here are some guidelines:

• In order for the dialog between the payment gateway and your merchant website to work, you must
make sure, together with your technical teams, that the 194.50.38.0/24 IP address range is authorized
on the various devices within your system (firewalls, apache server, proxy server, etc.).

Notifications are sent from an IP address in the 194.50.38.0/24 range in Test and Production modes.

• Using redirection leads to losing data presented in POST.

This is the case if there is a configuration on your devices or on the side of your host that redirects
the URLs of “http://www.example.com” type to “http://example.com” or “http://example.com” to
“https://example.com”.

• HTML must not be visible on the page. Access to images or CSS slows down the exchange between the
payment gateway and the merchant website.

• Avoid integrating time-consuming tasks, such as PDF invoice generation or sending e-mails in your script.

The processing time has a direct influence on the time it takes to display the payment summary page.

The longer the processing of the notification, the greater the delay for displaying the page. After 35
seconds, the payment gateway considers that the call has failed (timeout).

• If your page is only accessible in https, test your URL on the Qualys SSL Labs website (https://
www.ssllabs.com/ssltest/ and, if necessary, change your configuration if necessary in order to obtain
the A score.

Your SSL certificate must be signed by a certification authority known and recognized on the market.

• Make sure that you use the latest version of the TLS protocol in order to maintain a high level of security.

Quick start - Document version 1.9

All rights reserved - 27 / 42

https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/

6.2. Retrieving data returned in the response

The data returned in the response depends on the parameters sent in the payment request, the payment
type, the settings of your shop and the notification format.

The data is always sent by the payment gateway using the POST method.

The first step consists in retrieving the contents received via the POST method.

Examples:

• In PHP, data is stored in the super global variable $_POST,

• In ASP.NET (C#), you must use the Form property of the HttpRequest class,

• In Java, you must use the getParameter method of the HttpServletRequest interface.

The response consists of a field list. Each field contains a response value. The field list can be updated.

The script will have to create a loop to retrieve all the transmitted fields.

It is recommended to test the presence of the vads_hash field, which is only present during a notification.

if (empty ($_POST)){
 echo 'POST is empty';

}else{
 echo 'Data Received ';
 if (isset($_POST['vads_hash'])){

 echo 'Form API notification detected';
 //Signature computation
 //Signature verification
 //Order Update
 }
}

Quick start - Document version 1.9

All rights reserved - 28 / 42

6.3. Computing the IPN signature

The signature is computed by following the same logic as for creating the payment request.

The data submitted by the payment gateway is encoded in UTF-8. Any alteration of received
data will result in signature computation error.

You must compute the signature with the fields received in the notification and not the ones
that you transmitted in the payment request.

1. Take all the fields whose name starts with vads_.

2. Sort these fields alphabetically.

3. Concatenate the values of these fields separating them with the "+ character”.

4. Concatenate the result with the test or production key separating them with the “+ character”.

5. According to the signature algorithm defined in your shop configuration:

a. If your shop is configured to use “SHA-1”, apply the SHA-1 hash function to the chain obtained
during the previous step. Deprecated.

b. If your shop is configured to use “HMAC-SHA-256”, compute and encode in Base64 format the
message signature using the HMAC-SHA-256 algorithm with the following parameters:

• the SHA-256 hash function,

• the test or production key (depending on the value of the vads_ctx_mode field) as a shared
key,

• the result of the previous step as the message to authenticate.

Examples in PHP:

function getSignature ($params,$key)
{
 /**
 *Function that computes the signature.
 * $params: table containing the fields received in the IPN.
 * $key : TEST or PRODUCTION key
 */
 //Initialization of the variable that will contain the string to encrypt
 $signature_contents = "";

 //Sorting fields alphabetically
 ksort($params);
 foreach($params as $name=>$value){

 //Recovery of vads_ fields
 if (substr($name,0,5)=='vads_'){

 //Concatenation with "+"
 $signature_contents .= $value."+";
 }
 }
 //Adding the key at the end
 $signature_contents .= $key;

 //Encoding base64 encoded chain with HMAC-SHA-256 algorithm
 $sign = base64_encode(hash_hmac('sha256',$signature_contents, $key, true));
 return $sign;
 }

Quick start - Document version 1.9

All rights reserved - 29 / 42

6.4. Comparing signatures

To ensure the integrity of the response, you must compare the signature contained in the IPN with the
value computed in the previous step.

You should not compare the signature of the IPN with the signature that you transmitted in your
payment request.

If the signatures match

• You may consider the response as safe and proceed with the analysis.

• Otherwise, the script will have to raise an exception and notify the merchant about the anomaly.

Example in PHP:

if ($_POST['signature'] == $sign){

 //Processing data

}else{
 throw new Exception('An error occurred while computing the signature');
}

The signatures may not match in case of:

• an implementation error (error in your calculation, problem with UTF-8 encoding, etc.),

• an error in the key value or in the vads_ctx_mode field (frequent issue when shifting to production
mode),

• a data corruption attempt.

Quick start - Document version 1.9

All rights reserved - 30 / 42

6.5. Analyzing the nature of the notification

During a notification, the vads_url_check_src field allows to differentiate the notifications based on their
triggering event:

• creation of a transaction

• new notification sent by the merchant via the Expert Back Office

It specifies the applied notification rule:

Value Applied rule

PAY The PAY value is sent in the following cases:

• immediate payment (or first installment payment of a recurring payment)

• payment deferred for less than 7 days
Only if the merchant has configured the Instant Payment Notification URL at the end of
payment rule.

• payment abandoned or canceled by the buyer
Only if the merchant has configured the Instant Payment Notification URL on cancellation rule.

BO Execution of the notification via the Expert Back Office (right-click a transaction > Send the Instant
Payment Notification).

BATCH The BATCH value is sent in case of an update of a transaction status after its synchronization on the
acquirer side.
This is the case of payments with redirection to the acquirer.
Only if the merchant has configured the rule Instant Payment Notification URL on batch change.

BATCH_AUTO The BATCH_AUTO value is sent in the following cases:

• payment deferred for more than 7 days

• installments of a recurring payment (except the first one)
Only if the merchant has configured the Instant Payment Notification URL on batch
authorization rule.

The notification is sent with the authorization request for payments with "Waiting for authorization"
status.

REC The REC value is sent only for recurring payments if the merchant has configured the Instant
Payment Notification URL when creating recurring payments rule.

MERCH_BO The MERCH_BO value is sent:

• during an operation made via the Expert Back Office (refund, cancellation, modification,
validation, duplication, creation and/or update of token), only if the merchant has configured the
following notification rule: Instant Payment Notification URL on an operation coming from the
Back Office

RETRY Automatic retry of the IPN.

Table 1: Values associated with the vads_url_check_src field

After checking its value, the script can process differently depending on the nature of the notification.

For example:

If vads_url_check_src is set to PAY or BATCH_AUTO, the script will update the order status, etc.

If vads_url_check_src is set to REC, the script will retrieve the recurring payment reference and will
increment the number of the expired installment payments in case the payment has been accepted, etc.

Quick start - Document version 1.9

All rights reserved - 31 / 42

6.6. Processing the response data

Here is an example of analysis to guide you through processing the response data.

1. Identify the mode (TEST or PRODUCTION) that was used for creating the transaction by analyzing the
value of the vads_ctx_mode field.

2. Identify the order by retrieving the value of the vads_order_id field if you have transmitted it to the
payment gateway.

Make sure that the order status has not been updated yet.

3. Retrieve the payment result transmitted in the vads_trans_status field.

Its value allows you to define the order status.

Value Description

ABANDONED Abandoned
Payment abandoned by the buyer
The transaction was not created, and is therefore not
visible in the Expert Back Office.

ACCEPTED Accepted.
Status of a VERIFICATION type transaction for which the
authorization request or information request has been
successfully completed.
This status cannot evolve.
Transactions with the “ACCEPTED” status will never be
captured.

AUTHORISED Waiting for capture
The transaction has been accepted and will be automatically
captured at the bank on the expected date.

AUTHORISED_TO_VALIDATE To be validated
The transaction, created with manual validation, is
authorized. The Merchant must manually validate the
transaction in order for it to be captured.
The transaction can be validated as long as the expiration
date of the authorization request has not passed. If the
authorization validity period has passed, the payment status
changes to EXPIRED. The Expired status is final.

CANCELLED Canceled
The transaction has been canceled by the Merchant.

CAPTURED Captured
The transaction has been captured by the bank.

CAPTURE_FAILED Capture failed
Contact the technical support.

EXPIRED Expired
This status appears in the lifecycle of a payment with
deferred capture.
The expiry date of the authorization request has passed
and the Merchant has not validated the transaction. The
account of the cardholder will therefore not be debited.

REFUSED Refused
Transaction is declined.

SUSPENDED Suspended
The capture of the transaction is temporarily blocked by the
acquirer (AMEX GLOBAL or SECURE TRADING). Once the
transaction has been correctly captured, its status changes
to CAPTURED.

UNDER_VERIFICATION Control in progress
Waiting for the response from the acquirer.
This status is temporary.

Quick start - Document version 1.9

All rights reserved - 32 / 42

Value Description
For CB or PPRO transactions, this status indicates that a
refund has been requested. Verification is being made in
order to validate the refund.
A notification will be sent to the merchant website to inform
the Merchant of the status change.
Requires the activation of the Instant Payment Notification
URL on batch change notification rule.

WAITING_AUTHORISATION Waiting for authorization
The capture delay in the bank exceeds the authorization
validity period.

WAITING_AUTHORISATION_TO_VALIDATE To be validated and authorized
The capture delay in the bank exceeds the authorization
validity period.
A EUR 1 (or information request about the CB network if the
acquirer supports it) authorization has been accepted.
The Merchant must manually validate the transaction for
the authorization request and the capture to occur.

4. Analyze the vads_occurrence_type field to determine if it is a single payment or a payment that is
part of a series (subscription or installment payment).

Value Description

UNITAIRE Single payment (immediate payment).

RECURRENT_INITIAL First payment of a series

RECURRENT_INTERMEDIAIRE Nth payment of a series

RECURRENT_FINAL Last payment of a series

5. Analyze the vads_payment_config field to determine whether it is an installment payment.

Field name Value for an immediate payment Value for a payment in installments

vads_payment_config SINGLE MULTI
(the exact syntax is MULTI:first=X;count=Y;period=Z)

For a payment in installments, identify the installment number by retrieving the value of the
vads_sequence_number field.

Warning: with the application of Soft Decline, the vads_sequence_number field no longer allows to
easily identify the first installment of a payment in installments. Since the sequence number of the first
installment can be different from 1, the sequence number of the second installment will not necessarily
be 2.

6. Retrieve the value of the vads_trans_date field to identify the payment date.

7. Analyze the vads_payment_option_code field to determine whether it is an installment payment:

Value Description

1 Payment in 1 installment

2 Payment in 2 installments

3 Payment in 3 installments

n Payment in n installments

8. Retrieve the value of the vads_capture_delay field to identify the number of days before the capture
in the bank.

It will allow you to identify whether the payment is an immediate or a deferred payment.

9. Retrieve the used amount and currency. To do this, retrieve the values of the following fields:

Field name Description

vads_amount Payment amount in the smallest currency unit.

Quick start - Document version 1.9

All rights reserved - 33 / 42

Field name Description

vads_currency Code of the currency used for the payment.

vads_change_rate Exchange rate used for calculating the effective payment amount (see
vads_effective_amount).

vads_effective_amount Payment amount in the currency used for the capture in the bank.

vads_effective_currency Currency used for the capture in the bank.

10.Retrieve the value of the vads_auth_result field to identify the result of the authorization request.

The complete list of returned codes can be viewed in the data dictionary.

Here is a list of frequently returned codes that can help you understand the reason of the rejection:

Value Description

03 Invalid acceptor
This code is sent by the card issuer. It refers to a configuration problem on authorization servers (e.g. closed
contract, incorrect MCC declared, etc.).
To find out the specific reason of the rejection, the buyer must contact his or her bank.

05 Do not honor
This code is sent by the card issuer. This code is used in the following cases:

• Invalid expiry date

• Invalid CVV

• Exceeded credit limit

• Insufficient funds (etc.)

To find out the specific reason of the rejection, the buyer must contact his or her bank.

51 Insufficient balance or exceeded credit limit
This code is sent by the card issuer. This code appears if the funds on the buyer’s account are insufficient for
making the purchase.
To find out the specific reason of the rejection, the buyer must contact his or her bank.

56 Card absent from the file
This code is sent by the card issuer.
The entered card number is incorrect or the card number + expiration date combination does not exist.

57 Transaction not allowed for this cardholder
This code is sent by the card issuer. This code is used in the following cases:

• The buyer attempts to make an online payment with a cash withdrawal card

• The authorized payment limit is exceeded

To find out the specific reason of the rejection, the buyer must contact his or her bank.

59 Suspected fraud
This code is sent by the card issuer. This code appears when an incorrect CVV code or expiration date has been
entered several times.
To find out the specific reason of the rejection, the buyer must contact his or her bank.

60 The acceptor of the card must contact the acquirer
This code is sent by the card issuer. It refers to a configuration problem on authorization servers. It is used when
the merchant ID does not correspond to the used sales channel (e.g.: an e-commerce transaction with a distant
sale contract with manual entry of contract data).
Contact the customer service to resolve the problem.

81 Unsecured payment is not accepted by the issuer
This code is sent by the card issuer. After receiving this code, the payment gateway automatically makes a new
payment attempt with 3D Secure authentication, when possible.

11.Retrieve the cardholder authentication result. To do this:

a. Retrieve the value of the vads_threeds_enrolled field to identify the status of the card enrollment.

Value Description

Empty Incomplete 3DS authentication process (3DS disabled in the request, the merchant is not enrolled or the
payment method is not eligible for 3DS).

Y Authentication available, cardholder enrolled.

N Cardholder not enrolled.

Quick start - Document version 1.9

All rights reserved - 34 / 42

Value Description

U Impossible to identify the cardholder or authentication is not available for the card (e.g. commercial or
prepaid cards).

b. Retrieve the result of cardholder authentication by retrieving the value of the vads_threeds_status
field.

Value Description

Empty Incomplete 3DS authentication (3DS disabled in the request, the cardholder is not enrolled or the payment
method is not eligible for 3DS).

Y Cardholder authentication success.

N Cardholder authentication error.

U Authentication impossible.

A Authentication attempted but not completed.

12.Retrieve the result of fraud checks by identifying the value of the vads_risk_control field. This field is
sent only if the merchant has:

• subscribed to the "Risk management" service,

• enabled at least one verification process in the Expert Back Office (Settings > Risk management
menu).

It is populated with the list of values separated by ";" with the following syntax: vads_risk_control =
control1=result1;control2=result2

The possible values for control are:

Value Description

CARD_FRAUD Verifies whether the cardholder's card number is on the card
greylist.

SUSPECT_COUNTRY Checks whether the issuing country of the buyer’s card is on
the list of forbidden countries.

IP_FRAUD Verifies whether the cardholder's IP address is on the IP
greylist.

CREDIT_LIMIT Checks the purchase frequency and amounts for the same
card number, or the maximum amount of an order.

BIN_FRAUD Checks whether the BIN code of the card is on the BIN code
greylist.

ECB Checks whether the buyer’s card is of "e-carte bleue" type.

COMMERCIAL_CARD Checks whether the buyer’s card is a commercial card.

SYSTEMATIC_AUTO Checks whether the buyer’s card is a MAESTRO or VISA
ELECTRON card.

INCONSISTENT_COUNTRIES Checks whether the country of the IP address, the country
of the payment card and the buyer's country of residence
match.

NON_WARRANTY_PAYMENT Liability shift.

SUSPECT_IP_COUNTRY Checks whether the buyer’s country, identified by their IP
address, is on the list of forbidden countries.

The possible values for result are:

Value Description

OK OK.

WARNING Informational control failed.

ERROR Blocking control failed.

13.Retrieve the card type used for the payment.

Two scenarios are possible:

• For a payment processed with only one card. The fields to process are:

Quick start - Document version 1.9

All rights reserved - 35 / 42

Field name Description

vads_card_brand Brand of the card used for the payment, e.g.: CB, VISA, VISA_ELECTRON,
MASTERCARD, MAESTRO, VPAY

vads_card_number Card number used for the payment.

vads_expiry_month Expiry month between 1 and 12 (e.g.: 3 for March, 10 for October).

vads_expiry_year Expiry year in 4 digits (e.g.: 2023).

vads_bank_code Code of the issuing bank.

vads_bank_label Name of the issuing bank.

vads_bank_product Product code of the card

vads_card_country Country code of the country where the card was issued (alpha ISO 3166-2
code, e.g.: "FR" for France, "PF" for French Polynesia, "NC" for New Caledonia,
"US" for the United States).

• For a split payment (i.e. a transaction using several payment methods), the following fields must
be processed:

Field name Value Description

vads_card_brand MULTI Several types of payment cards are used for the
payment.

vads_payment_seq In Json format, see details
below.

Details of performed transactions.

The vads_payment_seq field (json format) describes the split payment sequence. It contains the
following elements:

1. "trans_id": transaction identifier used for the entire payment sequence.

2. "transaction": table of sequence transactions. It contains the following elements:

Field name Description

amount Amount of the payment sequence.

operation_type Debit transaction.

auth_number Authorization number.
Will not be returned if not applicable to the used payment method.
Example: 949478

auth_result Return code of the authorization request.

capture_delay Delay before the capture (in days).

• For a payment by card, this parameter is the requested capture date (ISO 8601 format). If
not sent in the payment form, the value defined in the Expert Back Office will be used.

card_brand Used payment method.
For a payment by card (e.g. CB or Visa or MasterCard co-branded CB cards), this parameter is
set to "CB".
See the Payment Gateway Implementation Guide available in our online documentation archive
to see the complete list of card types.

card_number Payment method number.

expiry_month Expiry month of the payment method.

expiry_year Expiry year of the payment method.

payment_certificate Payment certificate.

contract_used Contract used for the payment.

identifier Unique identifier (token) associated with a payment method.

identifier_status Only present if the requested action is a token creation or update.
Possible values:

Value Description

CREATED The authorization request has been accepted.
The token (or UMR for SEPA payment) has been successfully created.

NOT_CREATED The authorization request has been declined.
The token (or UMR for SEPA payment) has not been created, and
therefore cannot be viewed in the Expert Back Office.

Quick start - Document version 1.9

All rights reserved - 36 / 42

Field name Description

Value Description

UPDATED The token (or UMR for SEPA payment) has been successfully
updated.

NOT_UPDATED The token (or UMR for SEPA payment) has not been updated.

ABANDONED The action has been abandoned by the buyer (debtor).
The token (or UMR for SEPA payment) has not been created, and
therefore cannot be viewed in the Expert Back Office.

presentation_date For a payments by card, this parameter is the requested capture date (ISO 8601 format).

trans_id Transaction number.

ext_trans_id This field is not sent for credit card payments.

trans_uuid Unique reference generated by the payment gateway after the creation of a payment transaction.
Guarantees that each transaction is unique.

extra_result Numeric code of the risk assessment result.

Code Description

Empty No verification completed.

00 All the verification processes have been successfully completed.

02 Credit card velocity exceeded.

03 The card is on the Merchant’s greylist.

04 The country of origin of the card is on the Merchant’s greylist.

05 The IP address is on the Merchant’s greylist.

06 The BIN code is on the Merchant’s greylist.

07 Detection of an e-carte bleue.

08 Detection of a national commercial card.

09 Detection of a foreign commercial card.

14 Detection of a card that requires systematic authorization.

20 Relevance verification: countries do not match (country IP address, card country,
buyer's country).

30 The country of the this IP address is on the greylist.

99 Technical issue encountered by the server during a local verification process.

sequence_number Sequence number.

trans_status Status of the transaction.

Canceled transactions are also displayed in the table.

14.Store the value of the vads_trans_uuid field. It will allow you to assign unique identification to the
transaction if you use the Web Service APIs.

15.Retrieve all the order, buyer and shipping details.

These details will be provided in the response only of they have been transmitted in the payment
form.

Their values are identical to the ones submitted in the form.

16.Proceed to order update.

Quick start - Document version 1.9

All rights reserved - 37 / 42

6.7. Running tests and troubleshooting

In order to test the notifications, follow the steps below:

1. Make a payment (in TEST mode or in PRODUCTION mode).

2. Once the payment is complete, look for the transaction in your Back Office (Management > Transactions
or TEST Transactions menu if you made the payment in TEST mode).

3. Double-click the transaction to view the transaction details.

4. In the transaction details, search for the section entitled Technical data.

5. Check the status of the Instant Payment Notification URL:

The list of possible statuses is provided below:

Status Description

N/A The transaction did not result in a notification or no notification rules have been
enabled.

Undefined URL An event has triggered the end of payment notification rule but the URL is not
configured.

Call in progress The notification is in progress. This status is temporary.

Sent The notification has been successfully sent and a remote device returned an HTTP
200, 201, 202, 203, 204, 205 or 206 response status code.

Sent (permanent redirection) The merchant website has returned an HTTP 301 or 308 response status code
with a new URL to contact. A new call in POST mode has been made to the new
URL.

Sent (temporary redirection) The merchant website has returned an HTTP 302 or 307 response status code with
a new URL to contact. A new call in POST mode has been made to the new URL.

Sent (redirection to another page) The merchant website has returned an HTTP 303 response status code with a new
URL to contact. A new call in GET mode has been made to the new URL.

Failed Generic error different from the codes described below.

Server unavailable The notification has lasted more than 35s.

SSL handshake failure Your server is incorrectly configured.
Run a test on the Qualys website (https://www.ssllabs.com/ssltest/) and correct
the errors.

Connection interrupted Communication error.

Connection refused Communication error.

Server error 300 Case of redirection not supported by the gateway.

Server error 304 Case of redirection not supported by the gateway.

Server error 305 Case of redirection not supported by the gateway.

Server error 400 The merchant website returned a HTTP 400 Bad Request code.

Server error 401 The merchant website returned a HTTP 401 Unauthorized code.
Make sure that the resource is not protected by an .htaccess file.

Server error 402 The merchant website returned a HTTP 402 Payment Required code.

Server error 403 The merchant website returned a HTTP 403 Forbidden code.
Make sure that the resource is not protected by an .htaccess file.

Server error 404 The merchant website returned a HTTP 404 Not Found code.
Make sure that the URL is correctly specified in the rule configuration.
Make sure that the file is present on your server.

Server error 405 The merchant website returned a HTTP 405 Method Not allowed code.

Server error 406 The merchant website returned a HTTP 406 Not Acceptable code.

Server error 407 The merchant website returned a HTTP 407 Proxy Authentication Required code.

Quick start - Document version 1.9

All rights reserved - 38 / 42

https://www.ssllabs.com/ssltest/

Status Description

Server error 408 The merchant website returned a HTTP 408 Request Time-out code.

Server error 409 The merchant website returned a HTTP 409 Conflict code.

Server error 410 The merchant website returned a HTTP 410 Gone code.

Server error 411 The merchant website returned a HTTP 411 Length Required code.

Server error 412 The merchant website returned a HTTP 412 Precondition Failed code.

Server error 413 The merchant website returned a HTTP 413 Request Entity Too Large code.

Server error 414 The merchant website returned a HTTP 414 Request-URI Too long code.

Server error 415 The merchant website returned a HTTP 415 Unsupported Media Type code.

Server error 416 The merchant website returned a HTTP 416 Requested range unsatisfiable code.

Server error 417 The merchant website returned a HTTP 417 Expectation failed code.

Server error 419 The merchant website returned a HTTP 419 Authentication Timeout code.

Server error 421 The merchant website returned a HTTP 421 Misdirected Request code.

Server error 422 The merchant website returned a HTTP 422 Unprocessable Entity code.

Server error 423 The merchant website returned a HTTP 423 Locked code.

Server error 424 The merchant website returned a HTTP 424 Failed Dependency code.

Server error 425 The merchant website returned a HTTP 425 Too Early code.

Server error 426 The merchant website returned a HTTP 426 Upgrade Required code.

Server error 429 The merchant website returned a HTTP 431 Request Header Fields Too Large code.

Server error 431 The merchant website returned a HTTP 415 Unsupported Media Type code.

Server error 451 The merchant website returned a HTTP 451 Unavailable For Legal Reasons code.

Server error 500 The merchant website returned a HTTP 500 Internal Server Error code.
An application error has occurred on the level of the server hosting your shop.
See the logs of your HTTP server (usually apache).
The issue can only be corrected by performing an action on your server.

Server error 501 The merchant website returned a HTTP 501 Not Implemented code.

Server error 502 The merchant website returned a HTTP 502 Bad Gateway / Proxy Error code.

Server error 503 The merchant website returned a HTTP 503 Service Unavailable code.

Server error 504 The merchant website returned a HTTP 504 Gateway Time-out code.
The merchant server has not accepted the call within the time limit of 10s.

Server error 505 The merchant website returned a HTTP 505 HTTP Version not supported code.

For more information on a notification, click the link Display the details or click the Event log tab and search
for the line Notification URL call.

In order to help the merchant identify the source of the error, the gateway systematically analyses the 512
first characters returned by the merchant website and displays them in the Details column.

• Example of a successfully processed notification:

• Example of a failed notification:

Quick start - Document version 1.9

All rights reserved - 39 / 42

If the payment gateway is unable to access the URL of your page, an e-mail alert will be sent to the shop
administrator.

It contains:

• The HTTP code of the encountered error

• Parts of error analysis

• Its consequences

• Instructions to follow via the Expert Back Office for resending the request to the URL specified in step 4

Quick start - Document version 1.9

All rights reserved - 40 / 42

7. RETURNING TO THE SHOP

By default, when the buyer returns to the merchant website, no parameters will be transmitted by their
browser.

However, if the vads_return_mode field has been transmitted in the payment form (see chapter Managing
the return to the merchant websiteof the Hosted Payment Page Implementation Guide available in our
online document archive) it will be possible to retrieve the data:

• either via GET, the data is presented in the URL as follows: ?field1=value1&field2=value2

• or via POST: the data is sent in a POST form.

The data transmitted to the browser is the same as for notifications (IPN).

The vads_url_check_src and vads_hash fields will be sent only in the instant notification.

To analyze this data, see chapter Analyzing the payment result.

Note: the return to the shop will allow you to show only the visual context to the buyer. Do not use the
received data for processing in the database.

Quick start - Document version 1.9

All rights reserved - 41 / 42

8. OBTAINING HELP

Looking for help? Check our FAQ on our website

https://docs.lyra.com/en/collect/faq/sitemap.html

For any technical inquiries or if you need any help, contact technical support.

To help us process your demands, you will be asked to communicate your customer code (e.g.: CLXXXXX,
MKXXXXX or AGXXXXX).

This information is available in the Merchant Back Office (top of menu).

Quick start - Document version 1.9

All rights reserved - 42 / 42

https://docs.lyra.com/en/collect/faq/sitemap.html
https://www.lyra.com/fr/support/

	Contents
	1. HISTORY OF THE DOCUMENT
	2. ESTABLISHING INTERACTION WITH THE PAYMENT GATEWAY
	2.1. Setting up the payment page URL
	2.2. Identifying yourself when exchanging with the payment gateway
	2.3. Managing interaction with the merchant website
	2.4. Managing security

	3. SETTING UP NOTIFICATIONS
	3.1. Setting up the Instant Payment Notification
	3.2. Automatic retry in case of failure
	3.3. Other cases of notification

	4. SENDING A PAYMENT FORM VIA POST
	5. COMPUTING THE SIGNATURE
	5.1. Example of implementation with JAVA
	5.2. Example of implementation with PHP

	6. IMPLEMENTING THE IPN
	6.1. Preparing your environment
	6.2. Retrieving data returned in the response
	6.3. Computing the IPN signature
	6.4. Comparing signatures
	6.5. Analyzing the nature of the notification
	6.6. Processing the response data
	6.7. Running tests and troubleshooting

	7. RETURNING TO THE SHOP
	8. OBTAINING HELP

