
COLLECTING SOLUTION

Successful integration of
mobile payment via webview

Implementation Guide

Document version 1.5

Contents

1. HISTORY OF THE DOCUMENT.. 3

2. PRESENTATION..4

3. PAYMENT PROCESS.. 5

4. PAYMENT INTEGRATION..6

5. PHASE 1: MERCHANT SERVER:.. 7
5.1. Creation of the payment form...7

Transmitting buyer details.. 10
Transmitting order details...11
Transmitting shipping details... 13

5.2. Computing the signature... 14
5.3. Transferring the payment request..16
5.4. Receiving the Payment URL...16
5.5. Processing the notification at the end of payment (IPN)..16
5.6. Code sample.. 17

6. PHASE 2: MOBILE APPLICATION...18
6.1. Camera card scanning... 18
6.2. NFC card scanning..19

Successful integration of mobile payment via webview - Document version 1.5

All rights reserved - 3 / 19

1. HISTORY OF THE DOCUMENT

Version Author Date Comment

1.5 Lyra Collect 12/05/2020 • Server-side integration: addition of form fields for transmitting
oder, buyer and shipping details.

• Addition of signature computation.

• Integration redesign on the mobile application side.

• Addition of camera and NFC card scanning support.

1.4 Lyra Collect 16/10/2019 Initial version

This document and its contents are confidential. It is not legally binding. Any reproduction
and / or distribution of all or part of this document or its content to a third party is strictly
prohibited or subject to prior written authorization from Lyra Collect. All rights reserved.

Successful integration of mobile payment via webview - Document version 1.5

All rights reserved - 4 / 19

2. PRESENTATION

Lyra Collect offers you a unique solution for integrating mobile payment into your applications.

Our solution covers native iOS and Android applications. It is based on the use of the webview component.

A WebView allows to display content that is already available on the web within the application.

Thus, the Lyra Collect solution for mobile payment via WebView offers several advantages to the merchant:

• A unique web and mobile configuration.

You can copy the payment configuration of your website.

Enabled payment methods, anti-fraud rules, etc. are included in the mobile application.

• Consistency in the display of information related to the buyer journey.

Our payment pages are responsive and, therefore, are able to adapt to the different terminals of your
customers (mobile, tablet or desktop).

• High security thanks to our PCI DSS certification on the one hand, and to the 3DS management
integrated in the payment path on the other hand.

PCI DSS (= Payment Card Industry Data Security Standard) is the security standard of the payment card
industry. It is a data security standard for major payment card networks such as Visa, MasterCard, American
Express, Discover and JCB.

Successful integration of mobile payment via webview - Document version 1.5

All rights reserved - 5 / 19

3. PAYMENT PROCESS

The buyer validates the shopping cart.

1. The mobile application initializes a payment request via the merchant server.

2. The merchant server sends a payment request to the gateway.

3. The gateway generates a payment URL and returns it to the mobile application.

4. The merchant server sends a payment URL to the mobile application.

5. The mobile application opens the payment page in a webview.

6. The buyer enters his or her card details and clicks Validate.

7. The gateway proceeds to payment, then transmits the payment notification to the merchant server.

8. The merchant server analyzes the payment result.

9. The buyer is automatically redirected to the merchant application.

Successful integration of mobile payment via webview - Document version 1.5

All rights reserved - 6 / 19

4. PAYMENT INTEGRATION

Code samples are provided to facilitate integration:

Merchant server https://github.com/lyra/webview-payment-sparkjava-integration-sample
iOS https://github.com/lyra/webview-payment-ios-integration-sample

Android https://github.com/lyra/webview-payment-android-integration-sample

IMPORTANT
Make sure you read the comments present in the readme files before you start the application. The MainActivity.kt and
app-configuration.properties files must be modified following the instructions provided in the comments.

The integration occurs in two phases:

• Integration of data exchange between the merchant server and the payment gateway.

• Integration of data exchange between the mobile application and the merchant server.

https://github.com/lyra/webview-payment-sparkjava-integration-sample
https://github.com/lyra/webview-payment-ios-integration-sample
https://github.com/lyra/webview-payment-android-integration-sample

Successful integration of mobile payment via webview - Document version 1.5

All rights reserved - 7 / 19

5. PHASE 1: MERCHANT SERVER:

5.1. Creation of the payment form

The merchant server receives a payment request from the mobile application and must transmit it to the
payment gateway.

To do this, the merchant website will generate an HTML payment form that it will post to the payment
gateway.

The integrity of shared data is guaranteed by the exchange of alphanumeric signatures between the
payment gateway and the merchant server.

The merchant server will transmit the alphanumeric signature in the payment form (see chapter
Computing the signature on page 14).

IMPORTANT
All the data in the form must be encoded in UTF-8.
This will allow for the payment gateway to correctly interpret special characters (accents, punctuation marks, etc.).
Otherwise, the signature will be computed incorrectly and the form will be rejected.

To create the payment form:

1. Use all the fields of the table below to build your payment request.

Field name Description Format Value

vads_site_id Shop ID n8 E.g.: 12345678

vads_currency Numeric currency code to be used
for the payment, in compliance with
the ISO 4217 standard (numeric
code).

n3

E.g.: 978 for euro (EUR)

vads_amount Payment amount in the smallest
currency unit (cents for euro).

n..12
E.g.: 3000 for 30,00 EUR

vads_cust_email Buyer’s e-mail address ans..150 E.g.: abc@example.com

vads_payment_cards Card type. String E.g.: VISA
(See the Implementation guide - Hosted
Payment Form to view the list of possible
values).

vads_order_id Order ID ans..64 E.g.: 2-XQ001

vads_version Version of the exchange protocol
with the payment gateway

enum
V2

vads_theme_config Allows to improve performance by
disabling some elements of the
payment page, such as the language
selector, the logos at the bottom of
the page, etc.

map SIMPLIFIED_DISPLAY=true

Successful integration of mobile payment via webview - Document version 1.5

All rights reserved - 8 / 19

Field name Description Format Value

vads_trans_date Date and time of the payment form
in UTC format n14

Respect the YYYYMMDDHHMMSS format
E.g.: 20200101130025

vads_trans_id Transaction number an6 E.g.: xrT15p

vads_payment_config Payment type
enum

SINGLE for immediate payment
MULTI for installment payment

vads_page_action Action to perform enum PAYMENT

vads_ctx_mode Defines the mode of interaction
with the payment gateway.

enum
TEST or PRODUCTION

vads_action_mode Acquisition mode for payment
method data

enum
INTERACTIVE

signature Signature guaranteeing the
requests integrity exchanged
between the merchant
website and the payment
gateway. Its value calculation
is described here: Computing

the signature on page 14.

ans44 E.g.:
NrHSHyBBBc
+TtcauudspNHQ5cYcy4tS4IjvdC0ztFe8=

2. Use the fields below to manage the return to the mobile application at the end of the payment.

A payment can result in 4 different states:

• Payment accepted,

• Payment declined,

• Payment error,

• Payment abandoned by the buyer.

You must associate a URL to each status:

Field name Description Format Value

vads_url_success URL where the buyer will be
redirected in case of a successful
transaction.

ans..1024 E.g.:
http://webview.success

vads_url_refused URL where the buyer will be
redirected in case of a declined
transaction.

ans..1024 E.g.:
http://webview.refused

vads_url_cancel URL where the buyer will
be redirected in case of an
abandoned or expired transaction
(timeout).

ans..1024 E.g.:
http://webview.cancel

vads_url_error URL where the buyer will be
redirected in case of an error.

ans..1024 E.g.:
http://webview.error

3. Use the fields below to configure the time of redirection to the mobile application at the end of the
payment:

Field name Description Format

vads_redirect_success_timeout Defines the delay before the redirection that follows an accepted
payment.
This delay is presented in seconds and must be between 0 and 300
sec.
Set this field to "0" to not display the payment ticket and to
automatically redirect the buyer to the mobile application.

n..3

vads_redirect_error_timeout Defines the delay before the redirection that follows a declined
payment.
This delay is presented in seconds and must be between 0 and 300
sec.

n..3

Successful integration of mobile payment via webview - Document version 1.5

All rights reserved - 9 / 19

Field name Description Format
Set this field to "0" to not display the payment rejection
page and to automatically redirect the buyer to the mobile
application.

4. Add other optional fields according to your needs (see the following subsections).

Successful integration of mobile payment via webview - Document version 1.5

All rights reserved - 10 / 19

Transmitting buyer details

The Merchant can specify the buyer’s billing details (e-mail address, title, phone number, etc.). This
information will be used to create the invoice.

All the data transmitted via the payment form can be viewed in the transaction details in the Expert Back
Office (Buyer tab).

Use optional fields according to your requirements. These fields will be returned with the response and will
include the value transmitted in the form.

Field name Description Format Value

vads_cust_email Buyer’s e-mail address ans..150 E.g.: abc@example.com

vads_cust_id Buyer reference on the merchant
website

an..63
E.g.: C2383333540

vads_cust_title Buyer’s title an..63 E.g.: M.

vads_cust_status Status
enum

PRIVATE: for a private individual
COMPANY: for a company

vads_cust_first_name First name ans..63 E.g.: Laurent

vads_cust_last_name Name ans..63 E.g.: Durant

vads_cust_legal_name Buyer’s legal name an..100 E.g.: D. & Cie

vads_cust_cell_phone Cell phone number an..32 E.g.: 06 12 34 56 78

vads_cust_address_number Street number ans..64 E.g.: 109

vads_cust_address Postal address ans..255 E.g.: Rue de l'innovation

vads_cust_address2 Second line of the address ans..255 E.g.:

vads_cust_district District ans..127 E.g.: Downtown

vads_cust_zip Zip code an..64 E.g.: 31670

vads_cust_city City an..128 E.g.: Labège

vads_cust_state State / Region ans..127 E.g.: Occitanie

vads_cust_country Country code in compliance with
the ISO 3166 standard a2

E.g.: "FR" for France, "PF" for French
Polynesia, "NC" for New Caledonia,
"US" for the United States

Note

vads_cust_phone and vads_cust_cell_phone fields support all formats:

Examples:

• 0123456789

• +33123456789

• 0033123456789

• (00.571) 638.14.00

• 40 41 42 42

Successful integration of mobile payment via webview - Document version 1.5

All rights reserved - 11 / 19

Transmitting order details

The merchant can transmit the order details (order reference, description, shopping cart content, etc.).

This information can be found in the transaction details in the Expert Back Office.

1. Use optional fields according to your requirements. These fields will be returned in the response and
will include the value transmitted in the form.

Field name Description Format Value

vads_order_info Complementary order info an..255 E.g.: Door phone code 3125

vads_order_info2 Complementary order info an..255 E.g.: No elevator

vads_order_info3 Complementary order info an..255 E.g.: Express

vads_nb_products Number of items in the cart n..12 E.g.: 2

vads_product_ext_idN Product bar code on the
merchant website. N
corresponds to the index of the
item (0 for the first one, 1 for
the second one, etc.).

E.g.:
vads_product_ext_id0 =
"0123654789123654789"
vads_product_ext_id1 =
"0223654789123654789"

vads_product_labelN Item name. N corresponds to
the index of the item (0 for the
first one, 1 for the second one,
etc.).

ans..255 E.g.:
vads_product_label0 = "Dated 3 days
stay"
vads_product_label1 = "Private
concert"

vads_product_amountN Item amount expressed in
the smallest currency unit. N
corresponds to the index of the
item (0 for the first one, 1 for
the second one, etc.).

n..12 E.g.:
vads_product_amount0 = "32150"
vads_product_amount1 = "10700"

vads_product_typeN Item type. N corresponds to the
index of the item (0 for the first
one, 1 for the second one, etc.).

enum E.g.:
vads_product_type0 = "TRAVEL"
vads_product_type1 =
"ENTERTAINMENT"

vads_product_refN Item reference. N corresponds
to the index of the item (0 for
the first one, 1 for the second
one, etc.).

an..64 E.g.:
vads_product_ref0 = "1002127784"
vads_product_ref1 = "1002127693"

vads_product_qtyN Quantity of items. N
corresponds to the index of the
item (0 for the first one, 1 for
the second one, etc.).

n..12 E.g.:
vads_product_qty0 = "1"
vads_product_qty1 = "1"

2. Populate the vads_nb_products field with the number of items contained in the cart.

Note:

This field becomes mandatory for the shopping cart to be taken into account.

When it is populated, the Shopping cart tab becomes available in the transaction details in the Expert
Back Office.

However, if the other fields that start with vads_product_ are not populated, the tab will not include
any information. For this reason, when populating the vads_nb_products field, it becomes mandatory
to populate the other fields that start with vads_product_.

3. Populate the vads_product_amountN field with the amount for the items in the cart, using the
smallest currency unit.

N corresponds to the index of the item (0 for the first one, 1 for the second one, etc.).

4. Populate vads_product_typeN with the value corresponding to the item type.

N corresponds to the index of the item (0 for the first one, 1 for the second one, etc.).

Value Description

FOOD_AND_GROCERY Food and grocery

Successful integration of mobile payment via webview - Document version 1.5

All rights reserved - 12 / 19

Value Description

AUTOMOTIVE Cars / Moto

ENTERTAINMENT Entertainment / Culture

HOME_AND_GARDEN Home and gardening

HOME_APPLIANCE Household appliances

AUCTION_AND_GROUP_BUYING Auctions and group purchasing

FLOWERS_AND_GIFTS Flowers and presents

COMPUTER_AND_SOFTWARE Computers and software

HEALTH_AND_BEAUTY Health and beauty

SERVICE_FOR_INDIVIDUAL Services for individuals

SERVICE_FOR_BUSINESS Services for companies

SPORTS Sports

CLOTHING_AND_ACCESSORIES Clothes and accessories

TRAVEL Travel

HOME_AUDIO_PHOTO_VIDEO Sound, image and video

TELEPHONY Telephony

5. Populate vads_product_labelN with the name of each item contained in the cart.

N corresponds to the index of the item (0 for the first one, 1 for the second one, etc.).

6. Populate vads_product_qtyN with the quantity of each item contained in the cart.

N corresponds to the index of the item (0 for the first one, 1 for the second one, etc.).

7. Populate vads_product_refN with the reference of each item contained in the cart.

N corresponds to the index of the item (0 for the first one, 1 for the second one, etc.).

8. Check the value of the vads_amount field. It must correspond to the total amount of the order.

Successful integration of mobile payment via webview - Document version 1.5

All rights reserved - 13 / 19

Transmitting shipping details

The merchant can transmit the buyer’s shipping details (e-mail address, title, phone number etc.).

This information can be found in the transaction details in the Expert Back Office (Delivery tab).

Use optional fields according to your requirements. These fields will be returned in the response and will
include the value transmitted in the form.

Field name Description Format Value

vads_ship_to_city City an..128 E.g.: Bordeaux

vads_ship_to_country Country code in compliance with
the ISO 3166 standard (required
for triggering one or more actions
if the Shipping country control
profile is enabled).

a2

E.g.: FR

vads_ship_to_district District ans..127 E.g.: La Bastide

vads_ship_to_first_name First name ans..63 E.g.: Albert

vads_ship_to_last_name Name ans..63 E.g.: Durant

vads_ship_to_legal_name Legal name an..100 E.g.: D. & Cie

vads_ship_to_phone_num Phone number ans..32 E.g.: 0460030288

vads_ship_to_state State / Region ans..127 E.g.: Nouvelle Aquitaine

vads_ship_to_status Allows to specify the type of the
shipping address. enum

PRIVATE: for shipping to a private
individual
COMPANY: for shipping to a company

vads_ship_to_street_number Street number ans..64 E.g.: 2

vads_ship_to_street Postal address ans..255 E.g.: Rue Sainte Catherine

vads_ship_to_street2 Second line of the address ans..255

vads_ship_to_zip Zip code an..64 E.g.: 33000

Successful integration of mobile payment via webview - Document version 1.5

All rights reserved - 14 / 19

5.2. Computing the signature

To be able to compute the value of the signature field, you must have:

• all the fields that start with vads_

• the signature algorithm chosen in the shop configuration

• the key

The value of the key is available in your Expert Back Office via Settings > Shop > Keys tab.

The signature algorithm is defined in your Expert Back Office via Settings > Shop > Configuration tab.

For maximum security, it is recommended to use HMAC-SHA-256 algorithm and an alphanumeric key.

The use of SHA-1 algorithm is deprecated but maintained for compliance reasons.

Warning: you must not use the REST API keys for computing the signature of your payment form.

Only the use of the HMAC-SHA-256 algorithm is implemented in our code sample.

To compute the signature:

1. Sort the fields that start with vads_ alphabetically.

2. Make sure that all the fields are encoded in UTF-8.

3. Concatenate the values of these fields separating them with the “+” character.

4. Concatenate the result with the test or production key separating them with a “+”.

5. According to the signature algorithm defined in your shop configuration:

a. if your shop is configured to use “SHA-1”, apply the SHA-1 hash function to the chain obtained
during the previous step. Deprecated.

b. if your shop is configured to use “HMAC-SHA-256”, compute and encode in Base64 format the
message signature using the HMAC-SHA-256 algorithm with the following parameters:

• the SHA-256 hash function,

• the test or production key (depending on the value of the vads_ctx_mode field) as a shared
key,

• the result of the previous step as the message to authenticate.

6. Save the result of the previous step in the signature field.

Successful integration of mobile payment via webview - Document version 1.5

All rights reserved - 15 / 19

Example of parameters sent to the payment gateway:

<form method="POST" action="https://secure.lyra.com/vads-payment/entry.silentInit.a">
<input type="hidden" name="vads_action_mode" value="INTERACTIVE" />
<input type="hidden" name="vads_amount" value="5124" />
<input type="hidden" name="vads_ctx_mode" value="TEST" />
<input type="hidden" name="vads_currency" value="978" />
<input type="hidden" name="vads_page_action" value="PAYMENT" />
<input type="hidden" name="vads_payment_config" value="SINGLE" />
<input type="hidden" name="vads_site_id" value="12345678" />
<input type="hidden" name="vads_trans_date" value="20170129130025" />
<input type="hidden" name="vads_trans_id" value="123456" />
<input type="hidden" name="vads_version" value="V2" />
<input type="hidden" name="signature" value="ycA5Do5tNvsnKdc/eP1bj2xa19z9q3iWPy9/rpesfS0="/>

<input type="submit" name="pay" value="Pay"/>
</form>

This sample form is analyzed as follows:

1. The fields whose names start with vads_ are sorted alphabetically:

• vads_action_mode

• vads_amount

• vads_ctx_mode

• vads_currency

• vads_page_action

• vads_payment_config

• vads_site_id

• vads_trans_date

• vads_trans_id

• vads_version

2. The values of these fields are concatenated using the “+” character:

INTERACTIVE+5124+TEST+978+PAYMENT+SINGLE+12345678+20170129130025+123456+V2

3. The value of the test key is added at the end of the chain and separated with the “+” character. In this
example, the test key is 1122334455667788

INTERACTIVE+5124+TEST+978+PAYMENT+SINGLE+12345678+20170129130025+123456+V2+1122334455667788

4. If you use the SHA-1 algorithm, apply it to the obtained chain.

The result that must be transmitted in the signature field is:
59c96b34c74b9375c332b0b6a32e6deeec87de2b

5. If your shop is configured to use “HMAC-SHA-256”, compute and encode in Base64 format the message
signature using the HMAC-SHA-256 algorithm with the following parameters:

• the SHA-256 hash function,

• the test or production key (depending on the value of the vads_ctx_mode field) as a shared key,

• the result of the previous step as the message to authenticate.

The result that must be transmitted in the signature field is:

ycA5Do5tNvsnKdc/eP1bj2xa19z9q3iWPy9/rpesfS0=

Successful integration of mobile payment via webview - Document version 1.5

All rights reserved - 16 / 19

5.3. Transferring the payment request

The payment creation API is available via POST at this address:

https://secure.lyra.com/vads-payment/entry.silentInit.a

IMPORTANT
The URL of the payment creation API is different from the payment page URL, as described in the Hosted Payment Page -
Implementation Guide.

5.4. Receiving the Payment URL

The payment gateway returns a response in JSON format containing an HTTP success or error status code.

Success

In case of success, the payment gateway returns an HTTP status code 200 OK.

The response contains the payment URL where the mobile application must redirect the buyer.

{
 "status":"INITIALIZED",
 "redirect_url":"https://secure.lyra.com:443/vads-payment/
exec.refresh.a;jsessionid=CE2Cb9daEDe7f6dBF31FE65e.vadpayment01bdx"
}

Error

In case of error, the payment gateway returns an HTTP status code 400 Bad Request or 500 Internal Server
 Error.

The response will contain the details of the error.

{
 "status":"ERROR",
 "error":" {"code": "09", "value": "Missing or invalid parameter value"}"
}

For more details, see the list of error codes of the Hosted Payment Page Implementation Guide:

https://lyra.com/doc/en/collect/error-code/error-00.html

5.5. Processing the notification at the end of payment (IPN)

Once the payment has been made, the payment gateway notifies the merchant server about the
transaction result.

The data will be sent with the notification URL defined in the Expert Back Office.

See the Hosted Payment Page Implementation Guide for further information on configuring the notification
rules and analyzing the transmitted data.

https://lyra.com/doc/en/collect/error-code/error-00.html

Successful integration of mobile payment via webview - Document version 1.5

All rights reserved - 17 / 19

5.6. Code sample

See the complete example for deploying the merchant server:

https://github.com/lyra/webview-payment-sparkjava-integration-sample

https://github.com/lyra/webview-payment-sparkjava-integration-sample

Successful integration of mobile payment via webview - Document version 1.5

All rights reserved - 18 / 19

6. PHASE 2: MOBILE APPLICATION

Your mobile application integration must follow the following steps:

1. Payment request initialization and transmission of required data

The application generates a “payload” containing the shopping cart data, buyer’s contact information,
delivery details and transmits the payment request to the merchant server via a POST request.

2. Payment page display in a webview,

The application initializes a webview and displays the payment page using the URL returned by the
payment gateway.

3. End of payment detection.

The mobile application must analyze the different URLs that pass through the webview. Since the return
URLs are defined by the merchant server, you have control over the payment process and can decide
when to switch over to your native application.

Integration details:

iOS https://github.com/lyra/webview-payment-ios-integration-sample/
Android https://github.com/lyra/webview-payment-android-integration-sample

.

6.1. Camera card scanning

A cell phone camera can be used for pre-filling card details during the payment.

A complete integration example is provided here:

iOS https://github.com/lyra/webview-payment-iOS-integration-sample/tree/card_scanning
Android https://github.com/lyra/webview-payment-android-integration-sample/tree/card_scanning

This example uses external libraries developed by third-party providers.

IMPORTANT
Lyra Collect does not guarantee and is not responsible of the quality of external libraries.
The use of these libraries is not compatible with PCI-DSS.

https://github.com/lyra/webview-payment-ios-integration-sample/
https://github.com/lyra/webview-payment-android-integration-sample
https://github.com/lyra/webview-payment-iOS-integration-sample/tree/card_scanning
https://github.com/lyra/webview-payment-android-integration-sample/tree/card_scanning

Successful integration of mobile payment via webview - Document version 1.5

All rights reserved - 19 / 19

6.2. NFC card scanning

NFC cell phone module can be used for pre-filling card details during the payment.

A complete integration example is provided here:

iOS Not available.
Android https://github.com/lyra/webview-payment-android-integration-sample/tree/

card_scanning_by_nfc

This example uses external libraries developed by third-party providers.

IMPORTANT
Lyra Collect does not guarantee and is not responsible of the quality of external libraries.
The use of these libraries is not compatible with PCI-DSS.

https://github.com/lyra/webview-payment-android-integration-sample/tree/card_scanning_by_nfc
https://github.com/lyra/webview-payment-android-integration-sample/tree/card_scanning_by_nfc

	Contents
	1. HISTORY OF THE DOCUMENT
	2. PRESENTATION
	3. PAYMENT PROCESS
	4. PAYMENT INTEGRATION
	5. PHASE 1: MERCHANT SERVER:
	5.1. Creation of the payment form
	Transmitting buyer details
	Transmitting order details
	Transmitting shipping details

	5.2. Computing the signature
	5.3. Transferring the payment request
	5.4. Receiving the Payment URL
	5.5. Processing the notification at the end of payment (IPN)
	5.6. Code sample

	6. PHASE 2: MOBILE APPLICATION
	6.1. Camera card scanning
	6.2. NFC card scanning

