

Lyra Payment Gateway

UPI Intent Integration

Document version 1.1

Lyra Payment Gateway - UPI Intent integration

All rights reserved - 3 / 12

Version Author Date Comment

1.0

Lyra Network 18th December
2020

Initial release

1.1

Lyra Network 08th January 2021 Create charge resource – REST API
Webhook signature

1.2 Lyra Network 15/01/2021 Remove null parameters from UPI intent
keyId updated in webhook signature with test/prod indicator.
Introduced signature content versioning: v1

This document and its contents are confidential. It is not legally binding. No part of this document may be reproduced and/

or forwarded in whole or in part to a third party without the prior written consent of Lyra Network. All rights reserved.

For technical inquiries or support, you can reach us from Monday to Friday, 9am to
6pm

by phone: +91 (022) 33864910 / 911

by email: support.pg.in@lyra.com

from the Merchant Back Office: (Menu: Help > Contact support)

For any support request, please provide your shop ID (8-digit number).

HISTORY OF THE DOCUMENT

TECHNICAL SUPPORT

Lyra Payment Gateway - UPI Intent integration

All rights reserved - 4 / 12

Before creating a UPI intent, the merchant has to call our REST API to create a
charge resource. The charge resource has all the order details and customer details.

The charge uuid must be used as the transaction reference in the UPI intent

1.1 API

Endpoint: https://api.in.lyra.com/pg/rest/v1/charge

Method: POST

Content: JSON

The body shall be formatted in JSON as detailed below.

Parameter
name

Description Value

orderId Order id, as provided by
the merchant

e.g. TVH837dr28

orderInfo Additional order
information (free text)

e.g.
Invoice #abc
Shopping cart #123

currency 3-character currency code INR

amount Order amount, in paise e.g. 25700 for 257.00 INR

customer.uid Customer unique id, as
provided by the merchant

e.g. v1VMfTEoZsgiBqoMtwAdfZhDX862

customer.name Customer name e.g. Kiran Jha

customer.emailId Customer email id e.g. kiran.jha23823@mailer.com

customer.phone Customer phone no e.g. 8291234567

customer.address Customer address

customer.city Customer city

customer.state Customer state

customer.zip Customer zip code

customer.country Customer country

webhook.url URL of the merchant
webhook. The webhook is
called when the charge is
paid or expired.

maxAgeInHours Charge expiry delay, in
hours, between 1 and 999

e.g. 240 for 10 days

Example of charge creation request:
{
 "orderId": "Ha5FvH7J001",
 "orderInfo": "Bill Payment #123abc",
 "currency": "INR",

1. Create a charge resource

https://api.in.lyra.com/pg/rest/v1/charge
mailto:kiran.jha23823@mailer.com

Lyra Payment Gateway - UPI Intent integration

All rights reserved - 5 / 12

 "amount": 25700,
 "customer": {
 "uid":"v1VMfTEoZsgiBqoMtwAdfZhDX862",
 "name": "Khiran Jha",
 "emailId": "kiran.jha23823@mailer.com",
 "phone": "+918291234567"
 },
 "maxAgeInHours": 240,
 "webhook": {
 "url": "https://us-central1-sublyme-test.cloudfunctions.net/updateUPITransactionStatus"
 }
}

1.2 Charge resource

A charge resource object is returned as the response to the create charge request.

The same object is also returned in the notification webhook, see section 3.

The charge resource comes with a status and a unique identifier (uuid) which is
generated by the platform.

The charge uuid must be passed in the UPI intent as the transaction reference.

Parameter name Description Value

uuid Unique Charge ID 32 alphanumeric characters, e.g.
27019964b16b46d5b13795aaecff18ff

date Charge creation date e.g. 2021-01-08T10:10:21.329+00:00

expiryDate Charge expiry date e.g. 2021-01-09T10:10:21.329+00:00

status Charge status DUE / PAID / DROPPED

orderId Order Id as per merchant

orderInfo Order additional info as per merchant

currency Currency INR

amount Amount raised by the
merchant, in paise

e.g. 25700 for 257.00 INR

due Amount charged to the
customer, in paise

e.g. 25700 for 257.00 INR

paid Amount paid by the
customer, in paise

0 if charge status is DUE or DROPPED
equal to the due amount if charge status is PAID

customer.uid Customer unique ID as per merchant

customer.name Customer name as per merchant

customer.emailId Customer Email id as per merchant

customer.phone Customer Phone no as per merchant

customer.address Customer address as per merchant

customer.city Customer city as per merchant

customer.zip Customer zip code as per merchant

customer.country Customer country as per merchant

attempts Number of payment
attempts

0 or 1

testMode Transaction environment true for Test transaction

mailto:kiran.jha23823@mailer.com

Lyra Payment Gateway - UPI Intent integration

All rights reserved - 6 / 12

false for live transaction (production)

transactions Array of payment
transaction information

contains a single payment transaction

Example of charge resource :
{
 "uuid": "27019964b16b46d5b13795aaecff18ff",
 "date": "2021-01-08T10:10:21.329+00:00",
 "expiryDate": "2021-01-09T10:10:21.329+00:00",
 "status": "DUE",
 "orderId": "Ha5FvH7J001",
 "orderInfo": "Payment",
 "currency": "INR",
 "amount": 1000,
 "paid": 0,
 "due": 1000,
 "refunded": 0,
 "customer": {
 "uid": "v1VMfTEoZsgiBqoMtwAdfZhDX862",
 "name": "Rohit Tambe",
 "phone": "+919763951288",
 "email": "rohit.tambe@billcloud.in",
 "address": null,
 "city": null,
 "state": null,
 "zip": null,
 "country": null
 },
 "orderInfo": "Payment",
 "attempts": 0,
 "testMode": true,
 "dropReason": null,
 "paymentLink": "https://api.in.lyra.com/charge/27019964b16b46d5b13795aaecff18ff"
}

The UPI Intent flow provides smooth checkout experience as it automatically launches
a preferred UPI mobile app during payment.

2.1 Specification for creating a UPI intent

As per NPCI guidelines, below are the specifics to be followed by the merchant for Lyra
to receive and process the notification from the bank.

Parameter
name

Description Value

2. UPI Intent

Lyra Payment Gateway - UPI Intent integration

All rights reserved - 7 / 12

pa Payee VPA Merchant vpa, to be shared by Lyra

pn Payee Name Merchant name

tr Transaction ref id charg uuid from the charge API - 32
alphanumeric characters

am Transaction amount Order amount, as per merchant

cu Transaction currency INR

mode Transaction mode 01

orgid Origination ID 000000

mid Merchant ID Merchant ID shared by Lyra

Example of UPI intent

upi://pay?pa=lyra.2345432@bankname&pn=billcloud&tr=27019964b16b46d5b13795aaecff18ff&am=1
000&cu=INR&mode=01&orgid=000000&mid=P1700272

2.2 URL signature

For additional security the URL can be signed by the merchant as per NPCI
specifications.

The merchant registers a webhook url to receive notifications from Lyra when the UPI
payment has been processed.
The webhook is also called when the charge expires.

The webhook url must be publicly accessible. It is passed on as a parameter in the charge
creation request, see section 1.1.

3.1 Webhook content

The body of the webhook request contains the charge resource as detailed in section
1.2.

The charge status shall be either:

- PAID: the UPI payment was completed successfully. The paid amount shall be
equal to the due amount.

- DROPPED: the charge has expired or was cancelled by the merchant. The paid
amount shall be 0.

3.2 Webhook security

Since the webhook url is a public url it must be protected against malicious use or
data tampering.

3. Webhook notification

Lyra Payment Gateway - UPI Intent integration

All rights reserved - 8 / 12

The request is signed following the Digest Headers Drat and the HTTP Message
Signature draft from the IETF (Internet Engineering Task Force).

References:
HTTP Signature: https://tools.ietf.org/html/draft-ietf-httpbis-message-signatures-01
HTTP Digest Headers: https://tools.ietf.org/html/draft-ietf-httpbis-digest-headers-04
HTTP Semantics: https://tools.ietf.org/html/draft-ietf-httpbis-semantics-12

Basically a digest is computed from the request body and the digest is signed with
the shop key. The digest and the signature are placed in HTTP headers.

e.g.

POST /

HTTP Headers

content-type: 'application/json'

digest: 'SHA-256=/U+c6wqyNUmaDzlT6MxMHDE+w1FRyiCAvAqsljnv8Jw='

signature: 'v1=:3/bA+uT86y1hQVI1beH6txZGIWrCBNTeOIwfU9aF1no=:'

signature-input: 'v1=(*created content-type digest); alg=hmac-sha256;

keyid="44247028.test"; created=1610717375'

HTTP Body

{"uuid":"7f4b634a78054183b91fb06ade5549cd","date":"Jan 15, 2021 6:59:34

PM","expiryDate":"Jan 16, 2021 6:59:34

PM","status":"PAID","orderId":"fv9sfjzw","currency":"INR","amount":836991,"paid":836991,"d

ue":836991,"refunded":0,"customer":{"uid":"customer1234","name":"Payzen

Customer","phone":"2554562523","email":"emailId@emailId.com"},"attempts":1,"testMode":true

}

The merchant must cross-check the digest and the signature to guarantee the
integrity of the data.

Failure to check the signature will expose the merchant to data
tampering and/or fraudulent use of the webhook.

3.3 Cross-check the request digest

1. Compute the SHA-256 digest from the request body
2. Convert the digest to BASE64 character string
3. Compare the result with the value of the Digest HTTP header. It should match.

Pseudo-code
val checksum = sha256(request.body)

request.headers.Digest = 'SHA-256=' + base64(checksum)

3.4 Cross-check the request signature

https://tools.ietf.org/html/draft-ietf-httpbis-message-signatures-01
https://tools.ietf.org/html/draft-ietf-httpbis-digest-headers-04
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-12

Lyra Payment Gateway - UPI Intent integration

All rights reserved - 9 / 12

1. Extract the keyId value from the signature-input HTTP Header. It indicates the

shop id and the test environment which was used to sign the request, e.g.
keyId="44247028.test" for test transaction on shop 44247028 and
keyId="44247028.prod" for live transaction.

2. Extract the created value from the signature-input HTTP Header. It indicates the
UNIX timestamp which was used to sign the request, e.g. created=1610717375

3. Extract the value of the content-type HTTP Header, e.g. application/json
4. Take the digest value computed in the previous step or from the digest HTTP

header.
5. Concatenate the timestamp, the content type and the digest with the exact

format detailed in the pseudo-code below
6. Sign the concatenated string with HMAC-SHA-256 algorithm and the shop key.

Make sure to use the correct test or production shop key.
7. Convert the result to BASE64 character string
8. Compare the result with the value of the signature HTTP header. It should match.

Pseudo-code

val shopId = request.headers['signature-input'].keyId

val timestamp = request.headers['signature-input'].created

val contentType = request.headers['content-type']

val digest = request.headers['digest']

val toSign = '*created: ' + timestamp + '\n'

 + 'content-type: ' + contentType + '\n'

 + 'digest: ' + digest

val signature = hmacSha256(toSign, shop.key)

request.headers['Signature'] = 'v1=:' + base64(signature) + ':'

