
 
 

 

 

 

 

Lyra Payment Gateway 

Quick start Guide 

 

 
 
 
 
 
 

Document version 1.0 



Quick start - Document version 1.0 

All rights reserved - 3 / 12 

 

 
 
 
 
 
 

Version Author Date Comment 

1.0 
 

 
 

Lyra Network Jan 2020 
• Intial release 

 
 
 
 
 
 
 
 
 
 
 
 

 
This document and its contents are confidential. It is not legally binding. No part of this document may be reproduced and/ 

or forwarded in whole or in part to a third party without the prior written consent of Lyra Network. All rights reserved. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

For technical inquiries or support, you can reach us from Monday to Friday, between 9am and 6pm 

by phone: +91 (022) 33864910 / 911 

by email: support.pg.in@lyra.com 

from the Merchant Back Office: (Menu: Help > Contact support) 
 

For any support request, please provide your shop ID (8-digit number). 

 

HISTORY OF THE DOCUMENT 

TECHNICAL SUPPORT 



Quick start - Document version 1.0 

All rights reserved - 4 / 12 

 

 
 
 

 

1. At checkout time, the merchant website redirects the customer to the payment page hosted at 
Lyra Payment Gateway. 

 

 
 

2. The customer selects a payment option and enters the payment details (e.g. card details, net 
banking option, UPI address, etc.) 

 

 
 

3. The customer proceeds with the payment. Depending on the payment option selected, this may 
include a redirection to the bank page to enter OTP or to some external gateway. 
 

4. The payment result is displayed 
 

1. Payment flow 



Quick start - Document version 1.0 

All rights reserved - 5 / 12 

 

 
 

5. (Optional) The customer clicks the "RETURN TO SHOP" link and is redirected back to the merchant 
web site. The return URL and HTTP method (POST or GET) is configured by the merchant. 
 

6. (Optional) If the merchant has configured a callback URL, Lyra Payment Gateway automatically 
triggers a call to this URL. This mechanism is also referred to as IPN (Instant Payment 
Notification). 

 

 



Quick start - Document version 1.0 

All rights reserved - 6 / 12 

 

 
 
 

 

The merchant redirects the customer to Lyra gateway by posting an HTTP form with all the 
information required to proceed with the payment. 

 

checkout URL https://form.in.lyra.com/checkout/ 

method POST 

parameters see below 

encoding UTF-8 

 

2.1 Form parameters 
 

Make sure to encode the form data in UTF-8.  

 

Name Description Format Sample data 

Mandatory parameters 
signature Signature to guarantee the data integrity string i2le2yRmA3+Sgs10ChZJgYcKW

HsniBLcG//tYCnVTvM= 

vads_version version of the checkout form enum V2 

vads_action_mode Type of web integration for the payment 
page 

enum INTERACTIVE 

vads_site_id Identifier of the merchant online shop or 
website. Provided by Lyra. 

string 
8 characters 

84373659 

vads_ctx_mode Test mode or live mode enum TEST or PRODUCTION 

vads_order_id Order id, provided by the merchant. 
Should be unique 

string 
max 64 
characters 

allowed characters: alphabetic, 
numeric, space, dot (.), 
hyphen(-), underscore(_) 

vads_amount Amount to pay, in the smallest currency 
unit (e.g. in paisa for India). 

numeric 154000 for 1,540.00 INR 

vads_currency Currency 
ISO 4217 alpha code 

string 
3 characters 

INR 

vads_cust_name Customer full name string Rupesh Diwan 

vads_cust_email Customer email id string rupesh.diwan@bizbee.com 

vads_cust_phone Customer phone (landline or mobile) string 9123465656 

vads_cust_address Customer address string Satguru Sachkand, apt 605, 3rd 
street 

vads_cust_city Customer city string Mumbai 

vads_cust_state Customer region or state string Maharashtra 

vads_cust_zip Customer Zip Code string 400601 

vads_cust_country Customer country string India 

vads_return_mode HTTP method for the return URL enum NONE, GET, POST 

Optional parameters 

vads_url_return Return URL to the merchant web site at 
the end of the payment flow. 
If provided, overrides the return url 
configured in the back-office 

string htpps://myshop.co.in/checkout
/return?pg=lyra 

vads_redirect_succ
ess_timeout 

Delay (in seconds) before automatic 
redirection is triggered from the result 
page to the merchant web site  

numeric 60 for automatic redirection 
after 1 minute. 
0 for immediate redirection. 

vads_order_info Additional free-text information related to string  

2. Interaction with the gateway 

https://form.in.lyra.com/checkout/


Quick start - Document version 1.0 

All rights reserved - 7 / 12 

 

the order max 255 
characters 

vads_payment_opt
ion_code 

Restrict the available payment options enum list 
separated by 
semicolon 

CARD, NET_BANKING, UPI, 
WALLET, EMI  

vads_cust_id Customer identifier. Required to propose 
saved cards option. 
Must be unique 

string 
max 64 
characters 

 

 

2.2 Signature 

 
To secure the data exchange and to prevent the customer from tampering with the data, the data is 
signed with a secret key. Two different secret keys are available, one for TEST mode, one for 
PRODUCTION mode. 
 

The secret keys shall remain on the merchant server and never be accessible from the 
client side (e.g. javascript in the client browser) 

 

Make sure to use the right key to sign the form, depending on the vads_ctx_mode value. 

 

The test and production keys are accessible from the Merchant back-office: 

https://secure.payzen.co.in/vads-merchant/ 

Go to menu Settings > Shop 

Select the Keys tab. 

 

Figure 1: Keys tab 
 

For security reason, the production key is hidden as soon as a successful transaction has been done. 
For signature computation, please refer to section 3. 

 

2.3 Return URL 

 
At the end of the payment sequence, the customer is redirected to the merchant web site on the 
return URL provided by the merchant.  
 

return URL configured by the merchant 

method POST or GET 

parameters optional, see below 

encoding UTF-8 

 

https://secure.payzen.co.in/vads-merchant/


Quick start - Document version 1.0 

All rights reserved - 8 / 12 

 

The merchant can configure a static return URL in the Merchant Back Office via the menu Settings 
> Shop > Configuration tab: 

 

Figure 2: Setting up return URLs 
 

If no return URL is set, the main shop URL is used, as defined in the Details section of the shop. 

For a dynamic return URL, the merchant can use the form parameter vads_return_url. If this parameter 
is posted it overrides the default URL configured in the portal. 
 

2.4 Return parameters 
 
Return parameters are optional. If the form parameter vads_return_mode is empty or is set to NONE, 
no return parameter is posted. If the form parameter vads_return_mode=GET or POST, the 
parameters below are returned. 
 

The signature in the return parameters shall always be checked against the other returned 
parameters. See section 3. for signature check. 

Not checking the signature exposes the merchant to potential data tampering and fraud. E.g. a 
fraudster may intercept the return data from the client browser and change the charge status 
from DROPPED to PAID, or change the charge amount, etc. 

 
 

Parameter Description Format Sample data 
signature Signature to guarantee the data integrity string CmAVv4wujOnzEtBmovS4bf8Lg

Mao0lAkaLz9/CQuwWY= 

vads_version version of the checkout form enum same as input 

vads_site_id shop identifier string 
8 characters 

same as input 

vads_ctx_mode Triggers test mode or live mode enum same as input 

vads_order_id Order id. 
Should be unique 

string 
max 64 
characters 

same as input 

vads_amount Payment amount in the smallest currency 
unit (e.g. in paisa for India). 

numeric same as in put 

vads_currency Currency, ISO 4217 alpha code string 
3 characters 

same as input 

vads_order_info Additional free-text information related to 
the order 

string 
max 255 
characters 

same as input 

vads_charge_uuid Unique id of charge resource 
string 
32 characters 

c34747bf82044a70ab661cbe01aff
6a2 

vads_charge_status Charge status enum PAID, DROPPED 

vads_drop_reason 
Charge drop reason: expired, too many failed 
attempts, etc. string Too many failed attempts 

 

Any additional parameter compared to the above list can be safely  ignored. Those are legacy 
parameters which will be removed after some time. 



Quick start - Document version 1.0 

All rights reserved - 9 / 12 

 

 

2.5 Callback URL (IPN) 
 
The merchant can configure a callback URL (also referred to as IPN URL) that is called automatically 
by the gateway each time a charge is either PAID or DROPPED. 
 

callback URL configured by the merchant 

method POST 

parameters see below 

encoding UTF-8 

gateway source IP 194.50.38.0/24 

(in case white listing is required on merchant 

backend) 

 

The callback URL is configured from the Merchant back-office: 

https://secure.payzen.co.in/vads-merchant/ 

Go to menu Settings > Notification rules 
 

1. Right-click Instant Payment Notification URL at the end of payment. 
 

2. Select Manage the rule. 
 

 
3. Enter the callback URL for TEST mod and for PRODUCTION mode 

 

4. Enter the E-mail id to notify in case of failure. You can set multiple email ids separated with a semi-
colon. 

 
5. (Optional) Check the parameter for Automatic retry in case of failure. If checked, the gateway will try 

to call the callback URL up to 4 times. 
6. Save the modifications. 
 

2.6 Callback parameters 
 
The parameters posted on the callback URL are similar to the parameters posted on the return URL. 
return parameters. See section 2.4. 

https://secure.payzen.co.in/vads-merchant/


Quick start - Document version 1.0 

All rights reserved - 10 / 12 

 

The signature in the callback parameters shall be checked against the other returned 
parameters. See section 3. for signature check 

Not checking the signature exposes the merchant to potential data tampering and fraud. E.g. a 
"man-in-the-middle" attacker may intercept the callback data and change the charge status 
from DROPPED to PAID, or change the charge amount, etc. 

 
 
 
 

 

3.1 Digest algorithm 

The same signature algorithm is used to sign the form parameters and to check the return parameters and 
the callback parameters. 

Algorithm 

1. Make sure that all parameters are encoded in UTF-8 

2. Sort all the parameters with prefix "vads_" in alphabetic order 

3. Concatenate the parameter values using the character "+" as a separator 

4. Concatenate the result string with the test or production secret key, separated with "+" 

5. Apply the HMAC-SHA-256 hash function to the result string  

6. Encode the hash result in Base64 

7. The result is the signature. 

 Form posting: set the result in the signature parameter. 

 Return URL or callback URL: check the result with the signature parameter received. It should match! 

 

Example of parameters sent to the payment gateway: 

 

 

1. Parameter list, prefixed with "vads_", sorted alphabetically: 
• vads_action_mode 

3. Signature computation 



Quick start - Document version 1.0 

All rights reserved - 11 / 12 

 

INTERACTIVE+151200+TEST+INR+Satguru compound B, apt. 305, S.V. Road+Mumbai+India+rupesh.diwan@biz
bee.com+Rupesh Abhishek Diwan+9892452635+Maharashtra+400601+INV ABC123+Ref product #GHJFK48+POST
+12345678+V2 

• vads_amount 
• vads_ctx_mode 
• vads_currency 
• vads_cust_address 
• vads_cust_city 
• vads_cust_country 
• vads_cust_email 
• vads_cust_name 
• vads_cust_phone 
• vads_cust_state 
• vads_cust_zip 
• vads_order_id 
• vads_order_info 
• vads_return_mode 
• vads_site_id 
• vads_version 

2. The values of these fields are concatenated using the "+" character: 

3. The value of the secret key is added at the end of the chain and separated with the "+" character. In 
this example, the test secret key is 1122334455667788 

 

4. The string above is hashed with algorithm HMAC-SHA-256  and encoded in Base64 format. Note: the 
hashing algorithm requires also the secret key. 

Finally the signature is: 

4SOiU5sf1xvglULlcuQkC6kLtBAinY7dpiNbd9/gaps= 

 

3.2 Java implementation 
 

import javax.crypto.Mac; 

import javax.crypto.spec.SecretKeySpec; 

import java.io.UnsupportedEncodingException; 

import java.security.InvalidKeyException; 

import java.security.NoSuchAlgorithmException; 

import java.util.Base64; 

import java.util.TreeMap; 

public class VadsSignatureExample { 

    /** 

     * Build signature (HMAC SHA-256 version) from provided parameters and secret key. 

     * Parameters are provided as a TreeMap (with sorted keys). 

     */ 

    public static String buildSignature(TreeMap<String, String> formParameters, String secretKey)  

         throws NoSuchAlgorithmException, InvalidKeyException, UnsupportedEncodingException 

    { 

        // Build string to sign from parameters 

        String message = String.join("+", formParameters.values());      

        message += "+" + secretKey; 

        // Sign 

        return hmacSha256Base64(message, secretKey); 

    } 

     

    /** 

     * Signature computation 

     */ 

    public static String hmacSha256Base64(String message, String secretKey) throws      

        NoSuchAlgorithmException, InvalidKeyException, UnsupportedEncodingException 

        { 

        // Prepare hmac sha256 cipher algorithm with provided secretKey  

        Mac hmacSha256; 

        try { 

    hmacSha256 = Mac.getInstance("HmacSHA256"); 

INTERACTIVE+151200+TEST+INR+Satguru compound B, apt. 305, S.V. Road+Mumbai+India+rupesh.diwan@biz
bee.com+Rupesh Abhishek Diwan+9892452635+Maharashtra+400601+INV ABC123+Ref product #GHJFK48+POST
+12345678+V2+1122334455667788 



Quick start - Document version 1.0 

All rights reserved - 12 / 12 

 

} catch (NoSuchAlgorithmException nsae) {  

    hmacSha256 = Mac.getInstance("HMAC-SHA-256"); 

} 

SecretKeySpec secretKeySpec = new SecretKeySpec(secretKey.getBytes("UTF-8"), "HmacSHA256"); 

hmacSha256.init(secretKeySpec); 

// Build and return signature 

return Base64.getEncoder().encodeToString(hmacSha256.doFinal(message.getBytes("UTF-8"))); 

} 

    } 

} 

 

3.3 PHP implementation 
 
/** 

 * Function that computes the signature 

 * $params : table containing the fields to send in the payment form. 

 * $key : TEST or PRODUCTION key 

 */ 

function getSignature ($params,$key) 

{ 

    // Initialization of the variable that contains the string to encrypt 

    $to_sign = ""; 

     

    // sort fields alphabetically 

    ksort($params); 

    foreach($params as $name=>$value) { 

        // Filter fields with vads_ prefix 

        if (substr($nom,0,5)=='vads_') { 

    // String concatenation with separator "+" 

    $to_sign .= $value."+"; 

        } 

    } 

 

    // Concatenate the secret key 

    $to_sign .= $key; 

 

    // HSH-MAC-SHA256 + Base64 encoding 

    $signature = base64_encode(hash_hmac('sha256',$to_sign, $key, true));  

     

    return $signature; 

} 

 
 


